
U N I X T O O L B O X

This document is a collection of Unix/Linux/BSD commands and tasks which are useful for IT
work or for advanced users. This is a practical guide with concise explanations, however the
reader is supposed to know what s/he is doing.

1. System . 2

2. Processes . 7

3. File System . 8

4. Network . 13

5. SSH SCP . 20

6. VPN with SSH . 23

7. RSYNC . 25

8. SUDO . 26

9. Encrypt Files . 27

10. Encrypt Partitions . 27

11. SSL Certificates . 30

12. CVS . 31

13. SVN . 34

14. Useful Commands . 36

15. Install Software . 40

16. Convert Media . 41

17. Printing . 43

18. Databases . 43

19. Disk Quota . 45

20. Shells . 46

21. Scripting . 48

22. Programming . 50

23. Online Help . 52

Unix Toolbox revision 11
The latest version of this document can be found at http://cb.vu/unixtoolbox.xhtml. Replace
.xhtml on the link with .pdf for the PDF version and with .book.pdf for the booklet version. On a
duplex printer the booklet will create a small book ready to bind.
Error reports and comments are most welcome - c@cb.vu Colin Barschel.

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

http://cb.vu/unixtoolbox.xhtml
http://cb.vu/unixtoolbox.pdf
http://cb.vu/unixtoolbox.book.pdf
mailto:c\at\cb.vu

1 SYSTEM
Hardware (p2) | Statistics (p2) | Users (p3) | Limits (p3) | Runlevels (p4) | root password (p5)
| Compile kernel (p6)

Running kernel and system information

uname -a # Get the kernel version (and BSD version)
cat /etc/SuSE-release # Get SuSE version
cat /etc/debian_version # Get Debian version

Use /etc/DISTR-release with DISTR= lsb (Ubuntu), redhat, gentoo, mandrake, sun (Solaris), and
so on.

uptime # Show how long the system has been running + load
hostname # system's host name
hostname -i # Display the IP address of the host.
man hier # Description of the file system hierarchy
last reboot # Show system reboot history

1.1 Hardware Informations

Kernel detected hardware

dmesg # Detected hardware and boot messages
lsdev # information about installed hardware
dd if=/dev/mem bs=1k skip=768 count=256 2>/dev/null | strings -n 8 # Read BIOS

Linux

cat /proc/cpuinfo # CPU model
cat /proc/meminfo # Hardware memory
grep MemTotal /proc/meminfo # Display the physical memory
watch -n1 'cat /proc/interrupts' # Watch changeable interrupts continuously
free -m # Used and free memory (-m for MB)
cat /proc/devices # Configured devices
lspci -tv # Show PCI devices
lsusb -tv # Show USB devices
lshal # Show a list of all devices with their properties
dmidecode # Show DMI/SMBIOS: hw info from the BIOS

FreeBSD

sysctl hw.model # CPU model
sysctl hw # Gives a lot of hardware information
sysctl vm # Memory usage
dmesg | grep "real mem" # Hardware memory
sysctl -a | grep mem # Kernel memory settings and info
sysctl dev # Configured devices
pciconf -l -cv # Show PCI devices
usbdevs -v # Show USB devices
atacontrol list # Show ATA devices

1.2 Load, statistics and messages

The following commands are useful to find out what is going on on the system.

top # display and update the top cpu processes
mpstat 1 # display processors related statistics
vmstat 2 # display virtual memory statistics
iostat 2 # display I/O statistics (2 s intervals)
systat -vmstat 1 # BSD summary of system statistics (1 s intervals)

— System —

2

systat -tcp 1 # BSD tcp connections (try also -ip)
systat -netstat 1 # BSD active network connections
systat -ifstat 1 # BSD network traffic through active interfaces
systat -iostat 1 # BSD CPU and and disk throughput
tail -n 500 /var/log/messages # Last 500 kernel/syslog messages
tail /var/log/warn # System warnings messages see syslog.conf

1.3 Users

id # Show the active user id with login and group
last # Show last logins on the system
who # Show who is logged on the system
groupadd admin # Add group "admin" and user colin (Linux/Solaris)
useradd -c "Colin Barschel" -g admin -m colin
userdel colin # Delete user colin (Linux/Solaris)
adduser joe # FreeBSD add user joe (interactive)
rmuser joe # FreeBSD delete user joe (interactive)
pw groupadd admin # Use pw on FreeBSD
pw groupmod admin -m newmember # Add a new member to a group
pw useradd colin -c "Colin Barschel" -g admin -m -s /bin/tcsh
pw userdel colin; pw groupdel admin

Encrypted passwords are stored in /etc/shadow for Linux and Solaris and /etc/master.passwd
on FreeBSD. If the master.passwd is modified manually (say to delete a password), run #
pwd_mkdb -p master.passwd to rebuild the database.

To temporarily prevent logins system wide (for all users but root) use nologin. The message in
nologin will be displayed.

echo "Sorry no login now" > /etc/nologin # (Linux)
echo "Sorry no login now" > /var/run/nologin # (FreeBSD)

1.4 Limits

Some application require higher limits on open files and sockets (like a proxy web server,
database). The default limits are usually too low.

Linux

Per shell/script

The shell limits are governed by ulimit. The status is checked with ulimit -a. For example to
change the open files limit from 1024 to 10240 do:

ulimit -n 10240 # This is only valid within the shell
The ulimit command can be used in a script to change the limits for the script only.

Per user/process

Login users and applications can be configured in /etc/security/limits.conf. For example:

cat /etc/security/limits.conf
* hard nproc 250 # Limit user processes
asterisk hard nofile 409600 # Limit application open files

System wide

Kernel limits are set with sysctl. Permanent limits are set in /etc/sysctl.conf.

sysctl -a # View all system limits
sysctl fs.file-max # View max open files limit
sysctl fs.file-max=102400 # Change max open files limit
cat /etc/sysctl.conf

— System —

3

fs.file-max=102400 # Permanent entry in sysctl.conf
cat /proc/sys/fs/file-nr # How many file descriptors are in use

FreeBSD

Per shell/script

Use the command limits in csh or tcsh or as in Linux, use ulimit in an sh or bash shell.

Per user/process

The default limits on login are set in /etc/login.conf. An unlimited value is still limited by the
system maximal value.

System wide

Kernel limits are also set with sysctl. Permanent limits are set in /etc/sysctl.conf or /boot/
loader.conf. The syntax is the same as Linux but the keys are different.

sysctl -a # View all system limits
sysctl kern.maxfiles=XXXX # maximum number of file descriptors
kern.ipc.nmbclusters=32768 # Permanent entry in /etc/sysctl.conf
kern.maxfiles=65536 # Typical values for Squid
kern.maxfilesperproc=32768
kern.ipc.somaxconn=8192 # TCP queue. Better for apache/sendmail
sysctl kern.openfiles # How many file descriptors are in use
sysctl kern.ipc.numopensockets # How many open sockets are in use

See The FreeBSD handbook Chapter 111 for details.

Solaris

The following values in /etc/system will increase the maximum file descriptors per proc:

set rlim_fd_max = 4096 # Hard limit on file descriptors for a single proc
set rlim_fd_cur = 1024 # Soft limit on file descriptors for a single proc

1.5 Runlevels

Linux

Once booted, the kernel starts init which then starts rc which starts all scripts belonging to a
runlevel. The scripts are stored in /etc/init.d and are linked into /etc/rc.d/rcN.d with N the
runlevel number.
The default runlevel is configured in /etc/inittab. It is usually 3 or 5:

grep default: /etc/inittab
id:3:initdefault:

The actual runlevel (the list is shown below) can be changed with init. For example to go from
3 to 5:

init 5 # Enters runlevel 5
0 Shutdown and halt
1 Single-User mode (also S)
2 Multi-user without network
3 Multi-user with network
5 Multi-user with X
6 Reboot

Use chkconfig to configure the programs that will be started at boot in a runlevel.

chkconfig --list # List all init scripts
chkconfig --list sshd # Report the status of sshd

1.http://www.freebsd.org/handbook/configtuning-kernel-limits.html

— System —

4

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/configtuning-kernel-limits.html

chkconfig sshd --level 35 on # Configure sshd for levels 3 and 5
chkconfig sshd off # Disable sshd for all runlevels

Debian and Debian based distributions like Ubuntu or Knoppix use the command update-rc.d
to manage the runlevels scripts. Default is to start in 2,3,4 and 5 and shutdown in 0,1 and 6.

update-rc.d sshd defaults # Activate sshd with the default runlevels
update-rc.d sshd start 20 2 3 4 5 . stop 20 0 1 6 . # With explicit arguments
update-rc.d -f sshd remove # Disable sshd for all runlevels
shutdown -h now (or # poweroff) # Shutdown and halt the system

FreeBSD

The BSD boot approach is different from the SysV, there are no runlevels. The final boot state
(single user, with or without X) is configured in /etc/ttys. All OS scripts are located in /etc/
rc.d/ and in /usr/local/etc/rc.d/ for third-party applications. The activation of the service is
configured in /etc/rc.conf and /etc/rc.conf.local. The default behavior is configured in
/etc/defaults/rc.conf. The scripts responds at least to start|stop|status.

/etc/rc.d/sshd status
sshd is running as pid 552.
shutdown now # Go into single-user mode
exit # Go back to multi-user mode
shutdown -p now # Shutdown and halt the system
shutdown -r now # Reboot

The process init can also be used to reach one of the following states level. For example #
init 6 for reboot.

0 Halt and turn the power off (signal USR2)
1 Go to single-user mode (signal TERM)
6 Reboot the machine (signal INT)
c Block further logins (signal TSTP)
q Rescan the ttys(5) file (signal HUP)

1.6 Reset root password

Linux method 1

At the boot loader (lilo or grub), enter the following boot option:

init=/bin/sh
The kernel will mount the root partition and init will start the bourne shell instead of rc and
then a runlevel. Use the command passwd at the prompt to change the password and then
reboot. Forget the single user mode as you need the password for that.
If, after booting, the root partition is mounted read only, remount it rw:

mount -o remount,rw /
passwd # or delete the root password (/etc/shadow)
sync; mount -o remount,ro / # sync before to remount read only
reboot

FreeBSD and Linux method 2

FreeBSD won't let you go away with the simple init trick. The solution is to mount the root
partition from an other OS (like a rescue CD) and change the password on the disk.

• Boot a live CD or installation CD into a rescue mode which will give you a shell.
• Find the root partition with fdisk e.g. fdisk /dev/sda
• Mount it and use chroot:

mount -o rw /dev/ad4s3a /mnt
chroot /mnt # chroot into /mnt

— System —

5

passwd
reboot

Alternatively on FreeBSD, boot in single user mode, remount / rw and use passwd.

mount -u /; mount -a # will mount / rw
passwd
reboot

1.7 Kernel modules

Linux

lsmod # List all modules loaded in the kernel
modprobe isdn # To load a module (here isdn)

FreeBSD

kldstat # List all modules loaded in the kernel
kldload crypto # To load a module (here crypto)

1.8 Compile Kernel

Linux

cd /usr/src/linux
make mrproper # Clean everything, including config files
make oldconfig # Create a new config file from the current kernel
make menuconfig # or xconfig (Qt) or gconfig (GTK)
make # Create a compressed kernel image
make modules # Compile the modules
make modules_install # Install the modules
make install # Install the kernel
reboot

FreeBSD

To modify and rebuild the kernel, copy the generic configuration file to a new name and edit it
as needed. It is however also possible to edit the file GENERIC directly.

cd /usr/src/sys/i386/conf/
cp GENERIC MYKERNEL
cd /usr/src
make buildkernel KERNCONF=MYKERNEL
make installkernel KERNCONF=MYKERNEL

To rebuild the full OS:

make buildworld # Build the full OS but not the kernel
make buildkernel # Use KERNCONF as above if appropriate
make installkernel
reboot
mergemaster -p # Compares only files known to be essential
make installworld
mergemaster # Update all configuration and other files
reboot

For small changes in the source, sometimes the short version is enough:

make kernel world # Compile and install both kernel and OS
mergemaster
reboot

— System —

6

2 PROCESSES
Listing (p7) | Priority (p7) | Background/Foreground (p7) | Top (p7) | Kill (p8)

2.1 Listing and PIDs

Each process has a unique number, the PID. A list of all running process is retrieved with ps.

ps -auxefw # Extensive list of all running process
However more typical usage is with a pipe or with pgrep:

ps axww | grep cron
586 ?? Is 0:01.48 /usr/sbin/cron -s

pgrep -l sshd # Find the PIDs of processes by (part of) name
fuser -va 22/tcp # List processes using port 22
fuser -va /home # List processes accessing the /home partiton
strace df # Trace system calls and signals
truss df # same as above on FreeBSD/Solaris/Unixware
history | tail -50 # Display the last 50 used commands

2.2 Priority

Change the priority of a running process with renice. Negative numbers have a higher priority,
the lowest is -20 and "nice" have a positive value.

renice -5 586 # Stronger priority
586: old priority 0, new priority -5

Start the process with a defined priority with nice. Positive is "nice" or weak, negative is strong
scheduling priority. Make sure you know if /usr/bin/nice or the shell built-in is used (check
with # which nice).

nice -n -5 top # Stronger priority (/usr/bin/nice)
nice -n 5 top # Weaker priority (/usr/bin/nice)
nice +5 top # tcsh builtin nice (same as above!)

2.3 Background/Foreground

When started from a shell, processes can be brought in the background and back to the
foreground with [Ctrl]-[Z] (^Z), bg and fg. For example start two processes, bring them in the
background, list the processes with jobs and bring one in the foreground.

ping cb.vu > ping.log
^Z # ping is suspended (stopped) with [Ctrl]-[Z]
bg # put in background and continues running
jobs -l # List processes in background
[1] - 36232 Running ping cb.vu > ping.log
[2] + 36233 Suspended (tty output) top
fg %2 # Bring process 2 back in foreground

Use nohup to start a process which has to keep running when the shell is closed (immune to
hangups).

nohup ping -i 60 > ping.log &

2.4 Top

The program top displays running information of processes.

top

— Processes —

7

While top is running press the key h for a help overview. Useful keys are:
• u [user name] To display only the processes belonging to the user. Use + or blank to

see all users
• k [pid] Kill the process with pid.
• 1 To display all processors statistics (Linux only)
• R Toggle normal/reverse sort.

2.5 Signals/Kill

Terminate or send a signal with kill or killall.

ping -i 60 cb.vu > ping.log &
[1] 4712
kill -s TERM 4712 # same as kill -15 4712
killall -1 httpd # Kill HUP processes by exact name
pkill -9 http # Kill TERM processes by (part of) name
pkill -TERM -u www # Kill TERM processes owned by www
fuser -k -TERM -m /home # Kill every process accessing /home (to umount)

Important signals are:
1 HUP (hang up)
2 INT (interrupt)
3 QUIT (quit)
9 KILL (non-catchable, non-ignorable kill)
15 TERM (software termination signal)

3 FILE SYSTEM
Disk info (p8) | Boot (p9) | Disk usage (p9) | Opened files (p9) | Mount/remount (p10) | Mount
SMB (p11) | Mount image (p11) | Burn ISO (p11) | Create image (p12) | Memory disk (p13) |
Disk performance (p13)

3.1 Permissions

Change permission and ownership with chmod and chown. The default umask can be changed for
all users in /etc/profile for Linux or /etc/login.conf for FreeBSD. The default umask is usually
022. The umsak is subtracted from 777, thus umask 022 results in a permission 0f 755.

1 --x execute # Mode 764 = exec/read/write | read/write | read
2 -w- write # For: |-- Owner --| |- Group-| |Oth|
4 r-- read

ugo=a u=user, g=group, o=others, a=everyone
chmod [OPTION] MODE[,MODE] FILE # MODE is of the form [ugoa]*([-+=]([rwxXst]))
chmod 640 /var/log/maillog # Restrict the log -rw-r-----
chmod u=rw,g=r,o= /var/log/maillog # Same as above
chmod -R o-r /home/* # Recursive remove other readable for all users
chmod u+s /path/to/prog # Set SUID bit on executable (know what you do!)
find / -perm -u+s -print # Find all programs with the SUID bit
chown user:group /path/to/file # Change the user and group ownership of a file
chgrp group /path/to/file # Change the group ownership of a file

3.2 Disk information

diskinfo -v /dev/ad2 # information about disk (sector/size) FreeBSD
hdparm -I /dev/sda # information about the IDE/ATA disk (Linux)
fdisk /dev/ad2 # Display and manipulate the partition table
smartctl -a /dev/ad2 # Display the disk SMART info

— File System —

8

3.3 Boot

FreeBSD

To boot an old kernel if the new kernel doesn't boot, stop the boot at during the count down.

unload
load kernel.old
boot

3.4 System mount points/Disk usage

mount | column -t # Show mounted file-systems on the system
df # display free disk space and mounted devices
cat /proc/partitions # Show all registered partitions (Linux)

Disk usage

du -sh * # Directory sizes as listing
du -csh # Total directory size of the current directory
du -ks * | sort -n -r # Sort everything by size in kilobytes
ls -lSr # Show files, biggest last

3.5 Who has which files opened

This is useful to find out which file is blocking a partition which has to be unmounted and gives a
typical error of:

umount /home/
umount: unmount of /home # umount impossible because a file is locking home

failed: Device busy

FreeBSD and most Unixes

fstat -f /home # for a mount point
fstat -p PID # for an application with PID
fstat -u user # for a user name

Find opened log file (or other opened files), say for Xorg:

ps ax | grep Xorg | awk '{print $1}'
1252
fstat -p 1252
USER CMD PID FD MOUNT INUM MODE SZ|DV R/W
root Xorg 1252 root / 2 drwxr-xr-x 512 r
root Xorg 1252 text /usr 216016 -rws--x--x 1679848 r
root Xorg 1252 0 /var 212042 -rw-r--r-- 56987 w

The file with inum 212042 is the only file in /var:

find -x /var -inum 212042
/var/log/Xorg.0.log

Linux

Find opened files on a mount point with fuser or lsof:

fuser -m /home # List processes accessing /home
lsof /home
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
tcsh 29029 eedcoba cwd DIR 0,18 12288 1048587 /home/eedcoba (guam:/home)
lsof 29140 eedcoba cwd DIR 0,18 12288 1048587 /home/eedcoba (guam:/home)

— File System —

9

About an application:

ps ax | grep Xorg | awk '{print $1}'
3324
lsof -p 3324
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
Xorg 3324 root 0w REG 8,6 56296 12492 /var/log/Xorg.0.log

About a single file:

lsof /var/log/Xorg.0.log
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
Xorg 3324 root 0w REG 8,6 56296 12492 /var/log/Xorg.0.log

3.6 Mount/remount a file system

For example the cdrom. If listed in /etc/fstab:

mount /cdrom
Or find the device in /dev/ or with dmesg

FreeBSD

mount -v -t cd9660 /dev/cd0c /mnt # cdrom
mount_cd9660 /dev/wcd0c /cdrom # other method
mount -v -t msdos /dev/fd0c /mnt # floppy

Entry in /etc/fstab:

Device Mountpoint FStype Options Dump Pass#
/dev/acd0 /cdrom cd9660 ro,noauto 0 0

To let users do it:

sysctl vfs.usermount=1 # Or insert the line "vfs.usermount=1" in /etc/sysctl.conf

Linux

mount -t auto /dev/cdrom /mnt/cdrom # typical cdrom mount command
mount /dev/hdc -t iso9660 -r /cdrom # typical IDE
mount /dev/sdc0 -t iso9660 -r /cdrom # typical SCSI

Entry in /etc/fstab:

/dev/cdrom /media/cdrom subfs noauto,fs=cdfss,ro,procuid,nosuid,nodev,exec 0 0

Mount a FreeBSD partition with Linux

Find the partition number containing with fdisk, this is usually the root partition, but it could be
an other BSD slice too. If the FreeBSD has many slices, they are the one not listed in the fdisk
table, but visible in /dev/sda* or /dev/hda*.

fdisk /dev/sda # Find the FreeBSD partition
/dev/sda3 * 5357 7905 20474842+ a5 FreeBSD
mount -t ufs -o ufstype=ufs2,ro /dev/sda3 /mnt
/dev/sda10 = /tmp; /dev/sda11 /usr # The other slices

Remount

Remount a device without unmounting it. Necessary for fsck for example

mount -o remount,ro / # Linux
mount -o ro / # FreeBSD

Copy the raw data from a cdrom into an iso image:

dd if=/dev/cd0c of=file.iso

— File System —

10

3.7 Mount an SMB share

Suppose we want to access the SMB share myshare on the computer smbserver, the address as
typed on a Windows PC is \\smbserver\myshare\. We mount on /mnt/smbshare. Warning> cifs
wants an IP or DNS name, not a Windows name.

Linux

smbclient -U user -I 192.168.16.229 -L //smbshare/ # List the shares
mount -t smbfs -o username=winuser //smbserver/myshare /mnt/smbshare
mount -t cifs -o username=winuser,password=winpwd //192.168.16.229/myshare /mnt/share

Additionally with the package mount.cifs it is possible to store the credentials in a file, for
example /home/user/.smb:

username=winuser
password=winpwd

And mount as follow:

mount -t cifs -o credentials=/home/user/.smb //192.168.16.229/myshare /mnt/smbshare

FreeBSD

Use -I to give the IP (or DNS name); smbserver is the Windows name.

smbutil view -I 192.168.16.229 //winuser@smbserver # List the shares
mount_smbfs -I 192.168.16.229 //winuser@smbserver/myshare /mnt/smbshare

3.8 Mount an image

Linux loop-back

mount -t iso9660 -o loop file.iso /mnt # Mount a CD image
mount -t ext3 -o loop file.img /mnt # Mount an image with ext3 fs

FreeBSD

With memory device (do # kldload md.ko if necessary):

mdconfig -a -t vnode -f file.iso -u 0
mount -t cd9660 /dev/md0 /mnt
umount /mnt; mdconfig -d -u 0 # Cleanup the md device

Or with virtual node:

vnconfig /dev/vn0c file.iso; mount -t cd9660 /dev/vn0c /mnt
umount /mnt; vnconfig -u /dev/vn0c # Cleanup the vn device

Solaris and FreeBSD

with loop-back file interface or lofi:

lofiadm -a file.iso
mount -F hsfs -o ro /dev/lofi/1 /mnt
umount /mnt; lofiadm -d /dev/lofi/1 # Cleanup the lofi device

3.9 Create and burn an ISO image

This will copy the cd or DVD sector for sector. Without conv=notrunc, the image will be smaller
if there is less content on the cd. See below and the dd examples (page 38).

dd if=/dev/hdc of=/tmp/mycd.iso bs=2048 conv=notrunc

— File System —

11

Use mkisofs to create a CD/DVD image from files in a directory. To overcome the file names
restrictions: -r enables the Rock Ridge extensions common to UNIX systems, -J enables Joliet
extensions used by Microsoft systems. -L allows ISO9660 filenames to begin with a period.

mkisofs -J -L -r -V TITLE -o imagefile.iso /path/to/dir
On FreeBSD, mkisofs is found in the ports in sysutils/cdrtools.

Burn a CD/DVD ISO image

FreeBSD

FreeBSD does not enable DMA on ATAPI drives by default. DMA is enabled with the sysctl
command and the arguments below, or with /boot/loader.conf with the following entries:

hw.ata.ata_dma="1"
hw.ata.atapi_dma="1"

Use burncd with an ATAPI device (burncd is part of the base system) and cdrecord (in sysutils/
cdrtools) with a SCSI drive.

burncd -f /dev/acd0 data imagefile.iso fixate # For ATAPI drive
cdrecord -scanbus # To find the burner device (like 1,0,0)
cdrecord dev=1,0,0 imagefile.iso

Linux

Also use cdrecord with Linux as described above. Additionally it is possible to use the native
ATAPI interface which is found with:

cdrecord dev=ATAPI -scanbus
And burn the CD/DVD as above.

Convert a Nero .nrg file to .iso

Nero simply adds a 300Kb header to a normal iso image. This can be trimmed with dd.

dd bs=1k if=imagefile.nrg of=imagefile.iso skip=300

Convert a bin/cue image to .iso

The little bchunk program2 can do this. It is in the FreeBSD ports in sysutils/bchunk.

bchunk imagefile.bin imagefile.cue imagefile.iso

3.10 Create a file based image

For example a partition of 1GB using the file /usr/vdisk.img.

FreeBSD

dd if=/dev/random of=/usr/vdisk.img bs=1K count=1M
mdconfig -a -t vnode -f /usr/vdisk.img -u 1 # Creates device /dev/md1
bsdlabel -w /dev/md1
newfs /dev/md1c
mount /dev/md1c /mnt
umount /mnt; mdconfig -d -u 1; rm /usr/vdisk.img # Cleanup the md device

Linux

dd if=/dev/zero of=/usr/vdisk.img bs=1024k count=1024
mkfs.ext3 /usr/vdisk.img

2.http://freshmeat.net/projects/bchunk/

— File System —

12

http://freshmeat.net/projects/bchunk/
http://freshmeat.net/projects/bchunk/

mount -o loop /usr/vdisk.img /mnt
umount /mnt; rm /usr/vdisk.img # Cleanup

Linux with losetup

/dev/zero is much faster than urandom, but less secure for encryption.

dd if=/dev/urandom of=/usr/vdisk.img bs=1024k count=1024
losetup /dev/loop0 /usr/vdisk.img # Creates and associates /dev/loop0
mkfs.ext3 /dev/loop0
mount /dev/loop0 /mnt
losetup -a # Check used loops
umount /mnt
losetup -d /dev/loop0 # Detach
rm /usr/vdisk.img

3.11 Create a memory file system

A memory based file system is very fast for heavy IO application. How to create a 64 MB
partition mounted on /memdisk:

FreeBSD

mount_mfs -o rw -s 64M md /memdisk
umount /memdisk; mdconfig -d -u 0 # Cleanup the md device
md /memdisk mfs rw,-s64M 0 0 # /etc/fstab entry

Linux

mount -t tmpfs -osize=64m tmpfs /memdisk

3.12 Disk performance

Read and write a 1 GB file on partition ad4s3c (/home)

time dd if=/dev/ad4s3c of=/dev/null bs=1024k count=1000
time dd if=/dev/zero bs=1024k count=1000 of=/home/1Gb.file
hdparm -tT /dev/hda # Linux only

4 NETWORK
Routing (p14) | Additional IP (p14) | Change MAC (p14) | Ports (p14) | Firewall (p15) | IP
Forward (p15) | NAT (p15) | DNS (p16) | DHCP (p17) | Traffic (p18) | QoS (p18) | NIS (p20)

4.1 Debugging (See also Traffic analysis) (page 18)

mii-diag eth0 # Show the link status (Linux)
ifconfig fxp0 # Check the "media" field on FreeBSD
arp -a # Check the router (or host) ARP entry (all OS)
ping cb.vu # The first thing to try...
traceroute cb.vu # Print the route path to destination
mii-diag -F 100baseTx-FD eth0 # Force 100Mbit Full duplex (Linux)
ifconfig fxp0 media 100baseTX mediaopt full-duplex # Same for FreeBSD
netstat -s # System-wide statistics for each network protocol

— Network —

13

4.2 Routing

Print routing table

route -n # Linux
netstat -rn # Linux, BSD and UNIX
route print # Windows

Add and delete a route

FreeBSD

route add 212.117.0.0/16 192.168.1.1
route delete 212.117.0.0/16
route add default 192.168.1.1

Add the route permanently in /etc/rc.conf

static_routes="myroute"
route_myroute="-net 212.117.0.0/16 192.168.1.1"

Linux

route add -net 192.168.20.0 netmask 255.255.255.0 gw 192.168.16.254
ip route add 192.168.20.0/24 via 192.168.16.254 # same as above with ip route
route add -net 192.168.20.0 netmask 255.255.255.0 dev eth0
route add default gw 192.168.51.254
ip route add default via 192.168.51.254 # same as above with ip route
route delete -net 192.168.20.0 netmask 255.255.255.0

Windows

Route add 192.168.50.0 mask 255.255.255.0 192.168.51.253
Route add 0.0.0.0 mask 0.0.0.0 192.168.51.254

Use add -p to make the route persistent.

4.3 Configure additional IP addresses

Linux

ifconfig eth0 192.168.50.254 netmask 255.255.255.0 # First IP
ifconfig eth0:0 192.168.51.254 netmask 255.255.255.0 # Second IP

FreeBSD

ifconfig fxp0 inet 192.168.50.254/24 # First IP
ifconfig fxp0 alias 192.168.51.254 netmask 255.255.255.0 # Second IP

Permanent entries in /etc/rc.conf

ifconfig_fxp0="inet 192.168.50.254 netmask 255.255.255.0"
ifconfig_fxp0_alias0="192.168.51.254 netmask 255.255.255.0"

4.4 Change MAC address

ifconfig eth0 hw ether 00:01:02:03:04:05 # Linux
ifconfig fxp0 link 00:01:02:03:04:05 # FreeBSD

4.5 Ports in use

Listening open ports:

— Network —

14

netstat -an | grep LISTEN
lsof -i # Linux list all Internet connections
socklist # Linux display list of open sockets
sockstat -4 # FreeBSD application listing
netstat -anp --udp --tcp | grep LISTEN # Linux
netstat -tup # List active connections to/from system (Linux)
netstat -tupl # List listening ports from system (Linux)
netstat -ano # Windows

4.6 Firewall

Check if a firewall is running (typical configuration only):

Linux

iptables -L -n -v # For status
Open the iptables firewall
iptables -Z # Zero the packet and byte counters in all chains
iptables -F # Flush all chains
iptables -X # Delete all chains
iptables -P INPUT ACCEPT # Open everything
iptables -P FORWARD ACCEPT
iptables -P OUTPUT ACCEPT

FreeBSD

ipfw show # For status
ipfw list 65535 # if answer is "65535 deny ip from any to any" the fw is disabled
sysctl net.inet.ip.fw.enable=0 # Disable
sysctl net.inet.ip.fw.enable=1 # Enable

4.7 IP Forward for routing

Linux

Check and then enable IP forward with:

cat /proc/sys/net/ipv4/ip_forward # Check IP forward 0=off, 1=on
echo 1 > /proc/sys/net/ipv4/ip_forward

or edit /etc/sysctl.conf with:

net.ipv4.ip_forward = 1

FreeBSD

Check and enable with:

sysctl net.inet.ip.forwarding # Check IP forward 0=off, 1=on
sysctl net.inet.ip.forwarding=1
sysctl net.inet.ip.fastforwarding=1 # For dedicated router or firewall
Permanent with entry in /etc/rc.conf:
gateway_enable="YES" # Set to YES if this host will be a gateway.

4.8 NAT Network Address Translation

Linux

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE # to activate NAT
iptables -t nat -A PREROUTING -p tcp -d 78.31.70.238 --dport 20022 -j DNAT \
--to 192.168.16.44:22 # Port forward 20022 to internal IP port ssh

— Network —

15

iptables -t nat -A PREROUTING -p tcp -d 78.31.70.238 --dport 993:995 -j DNAT \
--to 192.168.16.254:993:995 # Port forward of range 993-995
ip route flush cache
iptables -L -t nat # Check NAT status

Delete the port forward with -D instead of -A.

FreeBSD

natd -s -m -u -dynamic -f /etc/natd.conf -n fxp0
Or edit /etc/rc.conf with:
firewall_enable="YES" # Set to YES to enable firewall functionality
firewall_type="open" # Firewall type (see /etc/rc.firewall)
natd_enable="YES" # Enable natd (if firewall_enable == YES).
natd_interface="tun0" # Public interface or IP address to use.
natd_flags="-s -m -u -dynamic -f /etc/natd.conf"

Port forward with:

cat /etc/natd.conf
same_ports yes
use_sockets yes
unregistered_only
redirect_port tcp insideIP:2300-2399 3300-3399 # port range
redirect_port udp 192.168.51.103:7777 7777

4.9 DNS

On Unix the DNS entries are valid for all interfaces and are stored in /etc/resolv.conf. The
domain to which the host belongs is also stored in this file. A minimal configuration is:

nameserver 78.31.70.238
search sleepyowl.net intern.lab
domain sleepyowl.net

Check the system domain name with:

hostname -d # Same as dnsdomainname

Windows

On Windows the DNS are configured per interface. To display the configured DNS and to flush
the DNS cache use:

ipconfig /? # Display help
ipconfig /all # See all information including DNS
ipconfig /flushdns # Flush the DNS cache

Forward queries

Dig is you friend to test the DNS settings. For example the public DNS server 213.133.105.2
ns.second-ns.de can be used for testing. See from which server the client receives the answer
(simplified answer).

dig sleepyowl.net
sleepyowl.net. 600 IN A 78.31.70.238
;; SERVER: 192.168.51.254#53(192.168.51.254)

The router 192.168.51.254 answered and the response is the A entry. Any entry can be queried
and the DNS server can be selected with @:

dig MX google.com
dig @127.0.0.1 NS sun.com # To test the local server
dig @204.97.212.10 NS MX heise.de # Query an external server
dig AXFR @ns1.xname.org cb.vu # Get the full zone (zone transfer)

— Network —

16

The program host is also powerful.

host -t MX cb.vu # Get the mail MX entry
host -t NS -T sun.com # Get the NS record over a TCP connection
host -a sleepyowl.net # Get everything

Reverse queries

Find the name belonging to an IP address (in-addr.arpa.). This can be done with dig, host and
nslookup:

dig -x 78.31.70.238
host 78.31.70.238
nslookup 78.31.70.238

/etc/hosts

Single hosts can be configured in the file /etc/hosts instead of running named locally to resolve
the hostname queries. The format is simple, for example:

78.31.70.238 sleepyowl.net sleepyowl
The priority between hosts and a dns query, that is the name resolution order, can be
configured in /etc/nsswitch.conf AND /etc/host.conf. The file also exists on Windows, it is
usually in:

C:\WINDOWS\SYSTEM32\DRIVERS\ETC

4.10 DHCP

Linux

Some distributions (SuSE) use dhcpcd as client. The default interface is eth0.

dhcpcd -n eth0 # Trigger a renew
dhcpcd -k eth0 # release and shutdown

The lease with the full information is stored in:

/var/lib/dhcpcd/dhcpcd-eth0.info

FreeBSD

FreeBSD (and Debian) uses dhclient. To configure an interface (for example bge0) run:

dhclient bge0
The lease with the full information is stored in:

/var/db/dhclient.leases.bge0
Use

/etc/dhclient.conf
to prepend options or force different options:

cat /etc/dhclient.conf
interface "rl0" {

prepend domain-name-servers 127.0.0.1;
default domain-name "sleepyowl.net";
supersede domain-name "sleepyowl.net";

}

Windows

The dhcp lease can be renewed with ipconfig:

— Network —

17

ipconfig /renew # renew all adapters
ipconfig /renew LAN # renew the adapter named "LAN"
ipconfig /release WLAN # release the adapter named "WLAN"

Yes it is a good idea to rename you adapter with simple names!

4.11 Traffic analysis

Bmon3 is a small console bandwidth monitor and can display the flow on different interfaces.

Sniff with tcpdump

tcpdump -nl -i bge0 not port ssh and src \(192.168.16.121 or 192.168.16.54\)
tcpdump -l > dump && tail -f dump # Buffered output
tcpdump -i rl0 -w traffic.rl0 # Write traffic in binary file
tcpdump -r traffic.rl0 # Read from file (also for ethereal
tcpdump port 80 # The two classic commands
tcpdump host google.com
tcpdump -i eth0 -X port \(110 or 143\) # Check if pop or imap is secure
tcpdump -n -i eth0 icmp # Only catch pings
tcpdump -i eth0 -s 0 -A port 80 | grep GET # -s 0 for full packet -A for ASCII

Additional important options:
-A Print each packets in clear text (without header)
-X Print packets in hex and ASCII
-l Make stdout line buffered
-D Print all interfaces available

On Windows use windump from www.winpcap.org. Use windump -D to list the interfaces.

Scan with nmap

Nmap4 is a port scanner with OS detection, it is usually installed on most distributions and is
also available for Windows. If you don't scan your servers, hackers do it for you...

nmap cb.vu # scans all reserved TCP ports on the host
nmap -sP 192.168.16.0/24 # Find out which IP are used and by which host on 0/24
nmap -sS -sV -O cb.vu # Do a stealth SYN scan with version and OS detection
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 3.8.1p1 FreeBSD-20060930 (protocol 2.0)
25/tcp open smtp Sendmail smtpd 8.13.6/8.13.6
80/tcp open http Apache httpd 2.0.59 ((FreeBSD) DAV/2 PHP/4.
[...]
Running: FreeBSD 5.X
Uptime 33.120 days (since Fri Aug 31 11:41:04 2007)

4.12 Traffic control (QoS)

Traffic control manages the queuing, policing, scheduling, and other traffic parameters for a
network. The following examples are simple practical uses of the Linux and FreeBSD capabilities
to better use the available bandwidth.

Limit upload

DSL or cable modems have a long queue to improve the upload throughput. However filling the
queue with a fast device (e.g. ethernet) will dramatically decrease the interactivity. It is
therefore useful to limit the device upload rate to match the physical capacity of the modem,
this should greatly improve the interactivity. Set to about 90% of the modem maximal (cable)
speed.

3.http://people.suug.ch/~tgr/bmon/
4.http://insecure.org/nmap/

— Network —

18

http://people.suug.ch/~tgr/bmon/
http://www.winpcap.org/
http://insecure.org/nmap/

Linux

For a 512 Kbit upload modem.

tc qdisc add dev eth0 root tbf rate 480kbit latency 50ms burst 1540
tc -s qdisc ls dev eth0 # Status
tc qdisc del dev eth0 root # Delete the queue
tc qdisc change dev eth0 root tbf rate 220kbit latency 50ms burst 1540

FreeBSD

FreeBSD uses the dummynet traffic shaper which is configured with ipfw. Pipes are used to set
limits the bandwidth in units of [K|M]{bit/s|Byte/s}, 0 means unlimited bandwidth. Using the
same pipe number will reconfigure it. For example limit the upload bandwidth to 500 Kbit.

kldload dummynet # load the module if necessary
ipfw pipe 1 config bw 500Kbit/s # create a pipe with limited bandwidth
ipfw add pipe 1 ip from me to any # divert the full upload into the pipe

Quality of service

Linux

Priority queuing with tc to optimize VoIP. See the full example on voip-info.org or
www.howtoforge.com. Suppose VoIP uses udp on ports 10000:11024 and device eth0 (could
also be ppp0 or so). The following commands define the QoS to three queues and force the VoIP
traffic to queue 1 with QoS 0x1e (all bits set). The default traffic flows into queue 3 and QoS
Minimize-Delay flows into queue 2.

tc qdisc add dev eth0 root handle 1: prio priomap 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 0
tc qdisc add dev eth0 parent 1:1 handle 10: sfq
tc qdisc add dev eth0 parent 1:2 handle 20: sfq
tc qdisc add dev eth0 parent 1:3 handle 30: sfq
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 \

match ip dport 10000 0x3C00 flowid 1:1 # use server port range
match ip dst 123.23.0.1 flowid 1:1 # or/and use server IP

Status and remove with

tc -s qdisc ls dev eth0 # queue status
tc qdisc del dev eth0 root # delete all QoS

Calculate port range and mask

The tc filter defines the port range with port and mask which you have to calculate. Find the
2^N ending of the port range, deduce the range and convert to HEX. This is your mask.
Example for 10000 -> 11024, the range is 1024.

2^13 (8192) < 10000 < 2^14 (16384) # ending is 2^14 = 16384
echo "obase=16;(2^14)-1024" | bc # mask is 0x3C00

FreeBSD

The max link bandwidth is 500Kbit/s and we define 3 queues with priority 100:10:1 for
VoIP:ssh:all the rest.

ipfw pipe 1 config bw 500Kbit/s
ipfw queue 1 config pipe 1 weight 100
ipfw queue 2 config pipe 1 weight 10
ipfw queue 3 config pipe 1 weight 1
ipfw add 10 queue 1 proto udp dst-port 10000-11024
ipfw add 11 queue 1 proto udp dst-ip 123.23.0.1 # or/and use server IP
ipfw add 20 queue 2 dsp-port ssh
ipfw add 30 queue 3 from me to any # all the rest

Status and remove with

— Network —

19

http://www.voip-info.org/wiki-QoS+Linux+with+HFS
http://www.howtoforge.com/voip_qos_traffic_shaping_iproute2_asterisk

ipfw list # rules status
ipfw pipe list # pipe status
ipfw flush # deletes all rules but default

4.13 NIS Debugging

Some commands which should work on a well configured NIS client:

ypwhich # get the connected NIS server name
domainname # The NIS domain name as configured
ypcat group # should display the group from the NIS server
cd /var/yp && make # Rebuild the yp database

Is ypbind running?

ps auxww | grep ypbind
/usr/sbin/ypbind -s -m -S servername1,servername2 # FreeBSD
/usr/sbin/ypbind # Linux
yppoll passwd.byname
Map passwd.byname has order number 1190635041. Mon Sep 24 13:57:21 2007
The master server is servername.domain.net.

Linux

cat /etc/yp.conf
ypserver servername
domain domain.net broadcast

5 SSH SCP
Public key (p20) | Fingerprint (p21) | SCP (p21) | Tunneling (p21)

5.1 Public key authentication

Connect to a host without password using public key authentication. The idea is to append your
public key to the authorized_keys2 file on the remote host. For this example let's connect
host-client to host-server, the key is generated on the client.

• Use ssh-keygen to generate a key pair. ~/.ssh/id_dsa is the private key, ~/.ssh/
id_dsa.pub is the public key.

• Copy only the public key to the server and append it to the file ~/.ssh/
authorized_keys2 on your home on the server.

ssh-keygen -t dsa -N ''
cat ~/.ssh/id_dsa.pub | ssh you@host-server "cat - >> ~/.ssh/authorized_keys2"

Using the Windows client from ssh.com

The non commercial version of the ssh.com client can be downloaded the main ftp site:
ftp.ssh.com/pub/ssh/. Keys generated by the ssh.com client need to be converted for the
OpenSSH server. This can be done with the ssh-keygen command.

• Create a key pair with the ssh.com client: Settings - User Authentication - Generate
New....

• I use Key type DSA; key length 2048.
• Copy the public key generated by the ssh.com client to the server into the ~/.ssh folder.
• The keys are in C:\Documents and Settings\%USERNAME%\Application

Data\SSH\UserKeys.
• Use the ssh-keygen command on the server to convert the key:

cd ~/.ssh
ssh-keygen -i -f keyfilename.pub >> authorized_keys2

— SSH SCP —

20

http://ftp.ssh.com/pub/ssh/

Notice: We used a DSA key, RSA is also possible. The key is not protected by a password.

Using putty for Windows

Putty5 is a simple and free ssh client for Windows.
• Create a key pair with the puTTYgen program.
• Save the public and private keys (for example into C:\Documents and

Settings\%USERNAME%\.ssh).
• Copy the public key to the server into the ~/.ssh folder:

scp .ssh/puttykey.pub root@192.168.51.254:.ssh/
• Use the ssh-keygen command on the server to convert the key for OpenSSH:

cd ~/.ssh
ssh-keygen -i -f puttykey.pub >> authorized_keys2

• Point the private key location in the putty settings: Connection - SSH - Auth

5.2 Check fingerprint

At the first login, ssh will ask if the unknown host with the fingerprint has to be stored in the
known hosts. To avoid a man-in-the-middle attack the administrator of the server can send you
the server fingerprint which is then compared on the first login. Use ssh-keygen -l to get the
fingerprint (on the server):

ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key.pub # For RSA key
2048 61:33:be:9b:ae:6c:36:31:fd:83:98:b7:99:2d:9f:cd /etc/ssh/ssh_host_rsa_key.pub
ssh-keygen -l -f /etc/ssh/ssh_host_dsa_key.pub # For DSA key (default)
2048 14:4a:aa:d9:73:25:46:6d:0a:48:35:c7:f4:16:d4:ee /etc/ssh/ssh_host_dsa_key.pub

Now the client connecting to this server can verify that he is connecting to the right server:

ssh linda
The authenticity of host 'linda (192.168.16.54)' can't be established.
DSA key fingerprint is 14:4a:aa:d9:73:25:46:6d:0a:48:35:c7:f4:16:d4:ee.
Are you sure you want to continue connecting (yes/no)? yes

5.3 Secure file transfer

Some simple commands:

scp file.txt host-two:/tmp
scp joe@host-two:/www/*.html /www/tmp
scp -r joe@host-two:/www /www/tmp

In Konqueror or Midnight Commander it is possible to access a remote file system with the
address fish://user@gate. However the implementation is very slow.
Furthermore it is possible to mount a remote folder with sshfs a file system client based on
SCP. See fuse sshfs6.

5.4 Tunneling

SSH tunneling allows to forward or reverse forward a port over the SSH connection, thus
securing the traffic and accessing ports which would otherwise be blocked. This only works with
TCP. The general nomenclature for forward and reverse is (see also ssh and NAT example):

ssh -L localport:desthost:destport user@gate # desthost as seen from the gate
ssh -R destport:desthost:localport user@gate # forwards your localport to destination
ssh -X user@gate # To force X forwarding

5.http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
6.http://fuse.sourceforge.net/sshfs.html

— SSH SCP —

21

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://fuse.sourceforge.net/sshfs.html

This will connect to gate and forward the local port to the host desthost:destport. Note desthost
is the destination host as seen by the gate, so if the connection is to the gate, then desthost is
localhost. More than one port forward is possible.

Direct forward on the gate

Let say we want to access the CVS (port 2401) and http (port 80) which are running on the
gate. This is the simplest example, desthost is thus localhost, and we use the port 8080 locally
instead of 80 so we don't need to be root. Once the ssh session is open, both services are
accessible on the local ports.

ssh -L 2401:localhost:2401 -L 8080:localhost:80 user@gate

Netbios and remote desktop forward to a second server

Let say a Windows smb server is behind the gate and is not running ssh. We need access to the
smb share and also remote desktop to the server.

ssh -L 139:smbserver:139 -L 3388:smbserver:3389 user@gate
The smb share can now be accessed with \\127.0.0.1\, but only if the local share is disabled,
because the local share is listening on port 139.
It is possible to keep the local share enabled, for this we need to create a new virtual device
with a new IP address for the tunnel, the smb share will be connected over this address.
Furthermore the local RDP is already listening on 3389, so we choose 3388. For this example
let's use a virtual IP of 10.1.1.1.

• With putty use Source port=10.1.1.1:139. It is possible to create multiple loop devices
and tunnel. On Windows 2000, only putty worked for me.

• With the ssh.com client, disable "Allow local connections only". Since ssh.com will bind
to all addresses, only a single share can be connected.

Now create the loopback interface with IP 10.1.1.1:
• # System->Control Panel->Add Hardware # Yes, Hardware is already connected # Add

a new hardware device (at bottom).
• # Install the hardware that I manually select # Network adapters # Microsoft , Microsoft

Loopback Adapter.
• Configure the IP address of the fake device to 10.1.1.1 mask 255.255.255.0, no

gateway.
• advanced->WINS, Enable LMHosts Lookup; Disable NetBIOS over TCP/IP.
• # Enable Client for Microsoft Networks. # Disable File and Printer Sharing for Microsoft

Networks.
I HAD to reboot for this to work. Now connect to the smb share with \\10.1.1.1 and remote
desktop to 10.1.1.1:3388.

Debug

If it is not working:
• Are the ports forwarded: netstat -an? Look at 0.0.0.0:139 or 10.1.1.1:139
• Does telnet 10.1.1.1 139 connect?
• You need the checkbox "Local ports accept connections from other hosts".
• Is "File and Printer Sharing for Microsoft Networks" disabled on the loopback interface?

Connect two clients behind NAT

Suppose two clients are behind a NAT gateway and client cliadmin has to connect to client
cliuser (the destination), both can login to the gate with ssh and are running Linux with sshd.
You don't need root access anywhere as long as the ports on gate are above 1024. We use 2022
on gate. Also since the gate is used locally, the option GatewayPorts is not necessary.
On client cliuser (from destination to gate):

ssh -R 2022:localhost:22 user@gate # forwards client 22 to gate:2022
On client cliadmin (from host to gate):

— SSH SCP —

22

ssh -L 3022:localhost:2022 admin@gate # forwards client 3022 to gate:2022
Now the admin can connect directly to the client cliuser with:

ssh -p 3022 admin@localhost # local:3022 -> gate:2022 -> client:22

Connect to VNC behind NAT

Suppose a Windows client with VNC listening on port 5900 has to be accessed from behind NAT.
On client cliwin to gate:

ssh -R 15900:localhost:5900 user@gate
On client cliadmin (from host to gate):

ssh -L 5900:localhost:15900 admin@gate
Now the admin can connect directly to the client VNC with:

vncconnect -display :0 localhost

6 VPN WITH SSH

As of version 4.3, OpenSSH can use the tun/tap device to encrypt a tunnel. This is very similar
to other TLS based VPN solutions like OpenVPN. One advantage with SSH is that there is no
need to install and configure additional software. Additionally the tunnel uses the SSH
authentication like pre shared keys. The drawback is that the encapsulation is done over TCP
which might result in poor performance on a slow link. Also the tunnel is relying on a single
(fragile) TCP connection. This technique is very useful for a quick IP based VPN setup. There is
no limitation as with the single TCP port forward, all layer 3/4 protocols like ICMP, TCP/UDP,
etc. are forwarded over the VPN. In any case, the following options are needed in the sshd_conf
file:

PermitRootLogin yes
PermitTunnel yes

6.1 Single P2P connection

Here we are connecting two hosts, hclient and hserver with a peer to peer tunnel. The
connection is started from hclient to hserver and is done as root. The tunnel end points are
10.0.1.1 (server) and 10.0.1.2 (client) and we create a device tun5 (this could also be an other
number). The procedure is very simple:

• Connect with SSH using the tunnel option -w
• Configure the IP addresses of the tunnel. Once on the server and once on the client.

Connect to the server

Connection started on the client and commands are executed on the server.

Server is on Linux

cli># ssh -w5:5 root@hserver
srv># ifconfig tun5 10.0.1.1 netmask 255.255.255.252 # Executed on the server shell

Server is on FreeBSD

cli># ssh -w5:5 root@hserver
srv># ifconfig tun5 10.0.1.1 10.0.1.2 # Executed on the server shell

Configure the client

Commands executed on the client:

— VPN with SSH —

23

cli># ifconfig tun5 10.0.1.2 netmask 255.255.255.252 # Client is on Linux
cli># ifconfig tun5 10.0.1.2 10.0.1.1 # Client is on FreeBSD

The two hosts are now connected and can transparently communicate with any layer 3/4
protocol using the tunnel IP addresses.

6.2 Connect two networks

In addition to the p2p setup above, it is more useful to connect two private networks with an
SSH VPN using two gates. Suppose for the example, netA is 192.168.51.0/24 and netB
192.168.16.0/24. The procedure is similar as above, we only need to add the routing. NAT must
be activated on the private interface only if the gates are not the same as the default gateway
of their network.
192.168.51.0/24 (netA)|gateA <-> gateB|192.168.16.0/24 (netB)

• Connect with SSH using the tunnel option -w.
• Configure the IP addresses of the tunnel. Once on the server and once on the client.
• Add the routing for the two networks.
• If necessary, activate NAT on the private interface of the gate.

The setup is started from gateA in netA.

Connect from gateA to gateB

Connection is started from gateA and commands are executed on gateB.

gateB is on Linux

gateA># ssh -w5:5 root@gateB
gateB># ifconfig tun5 10.0.1.1 netmask 255.255.255.252 # Executed on the gateB shell
gateB># route add -net 192.168.51.0 netmask 255.255.255.0 dev tun5
gateB># echo 1 > /proc/sys/net/ipv4/ip_forward # Only needed if not default gw
gateB># iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

gateB is on FreeBSD

gateA># ssh -w5:5 root@gateB # Creates the tun5 devices
gateB># ifconfig tun5 10.0.1.1 10.0.1.2 # Executed on the gateB shell
gateB># route add 192.168.51.0/24 10.0.1.2
gateB># sysctl net.inet.ip.forwarding=1 # Only needed if not default gw
gateB># natd -s -m -u -dynamic -n fxp0 # see NAT (page 15)
gateA># sysctl net.inet.ip.fw.enable=1

Configure gateA

Commands executed on gateA:

gateA is on Linux

gateA># ifconfig tun5 10.0.1.2 netmask 255.255.255.252
gateA># route add -net 192.168.16.0 netmask 255.255.255.0 dev tun5
gateA># echo 1 > /proc/sys/net/ipv4/ip_forward
gateA># iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

gateA is on FreeBSD

gateA># ifconfig tun5 10.0.1.2 10.0.1.1
gateA># route add 192.168.16.0/24 10.0.1.2
gateA># sysctl net.inet.ip.forwarding=1
gateA># natd -s -m -u -dynamic -n fxp0 # see NAT (page 15)
gateA># sysctl net.inet.ip.fw.enable=1

The two private networks are now transparently connected via the SSH VPN. The IP forward and
NAT settings are only necessary if the gates are not the default gateways. In this case the
clients would not know where to forward the response, and nat must be activated.

— VPN with SSH —

24

7 RSYNC

Rsync can almost completely replace cp and scp, furthermore interrupted transfers are
efficiently restarted. A trailing slash (and the absence thereof) has different meanings, the man
page is good... Here some examples:
Copy the directories with full content:

rsync -a /home/colin/ /backup/colin/
rsync -a /var/ /var_bak/
rsync -aR --delete-during /home/user/ /backup/ # use relative (see below)

Same as before but over the network and with compression. Rsync uses SSH for the transport
per default and will use the ssh key if they are set. Use ":" as with SCP. A typical remote copy:

rsync -axSRzv /home/user/ user@server:/backup/user/
Exclude any directory tmp within /home/user/ and keep the relative folders hierarchy, that is
the remote directory will have the structure /backup/home/user/. This is typically used for
backups.

rsync -azR --exclude /tmp/ /home/user/ user@server:/backup/
Use port 20022 for the ssh connection:

rsync -az -e 'ssh -p 20022' /home/colin/ user@server:/backup/colin/
Using the rsync daemon (used with "::") is much faster, but not encrypted over ssh. The
location of /backup is defined by the configuration in /etc/rsyncd.conf. The variable
RSYNC_PASSWORD can be set to avoid the need to enter the password manually.

rsync -axSRz /home/ ruser@hostname::rmodule/backup/
rsync -axSRz ruser@hostname::rmodule/backup/ /home/ # To copy back

Some important options:
-a, --archive archive mode; same as -rlptgoD (no -H)
-r, --recursive recurse into directories
-R, --relative use relative path names
-H, --hard-links preserve hard links
-S, --sparse handle sparse files efficiently
-x, --one-file-system don't cross file system boundaries
--exclude=PATTERN exclude files matching PATTERN
--delete-during receiver deletes during xfer, not before
--delete-after receiver deletes after transfer, not before

7.1 Rsync on Windows

Rsync is available for Windows through cygwin or as stand-alone packaged in cwrsync7. This is
very convenient for automated backups. Install one of them (not both) and add the path to the
Windows system variables: # Control Panel -> System -> tab Advanced, button Environment
Variables. Edit the "Path" system variable and add the full path to the installed rsync, e.g.
C:\Program Files\cwRsync\bin or C:\cygwin\bin. This way the commands rsync and ssh are
available in a Windows command shell.

Public key authentication

Rsync is automatically tunneled over SSH and thus uses the SSH authentication on the server.
Automatic backups have to avoid a user interaction, for this the SSH public key authentication
can be used and the rsync command will run without a password.
All the following commands are executed within a Windows console. In a console (Start -> Run
-> cmd) create and upload the key as described in SSH, change "user" and "server" as

7.http://sourceforge.net/projects/sereds

— RSYNC —

25

http://sourceforge.net/projects/sereds/

appropriate. If the file authorized_keys2 does not exist yet, simply copy id_dsa.pub to
authorized_keys2 and upload it.

ssh-keygen -t dsa -N '' # Creates a public and a private key
rsync user@server:.ssh/authorized_keys2 . # Copy the file locally from the server
cat id_dsa.pub >> authorized_keys2 # Or use an editor to add the key
rsync authorized_keys2 user@server:.ssh/ # Copy the file back to the server
del authorized_keys2 # Remove the local copy

Now test it with (in one line):

rsync -rv "/cygdrive/c/Documents and Settings/%USERNAME%/My Documents/" \
'user@server:My\ Documents/'

Automatic backup

Use a batch file to automate the backup and add the file in the scheduled tasks (Programs ->
Accessories -> System Tools -> Scheduled Tasks). For example create the file backup.bat and
replace user@server.

@ECHO OFF
REM rsync the directory My Documents
SETLOCAL
SET CWRSYNCHOME=C:\PROGRAM FILES\CWRSYNC
SET CYGWIN=nontsec
SET CWOLDPATH=%PATH%
REM uncomment the next line when using cygwin
SET PATH=%CWRSYNCHOME%\BIN;%PATH%
echo Press Control-C to abort
rsync -av "/cygdrive/c/Documents and Settings/%USERNAME%/My Documents/" \
'user@server:My\ Documents/'
pause

8 SUDO

Sudo is a standard way to give users some administrative rights without giving out the root
password. Sudo is very useful in a multi user environment with a mix of server and
workstations. Simply call the command with sudo:

sudo /etc/init.d/dhcpd restart # Run the rc script as root
sudo -u sysadmin whoami # Run cmd as an other user

8.1 Configuration

Sudo is configured in /etc/sudoers and must only be edited with visudo. The basic syntax is
(the lists are comma separated):

user hosts = (runas) commands # In /etc/sudoers
users one or more users or %group (like %wheel) to gain the rights
hosts list of hosts (or ALL)
runas list of users (or ALL) that the command rule can be run as. It is enclosed in ()!
commands list of commands (or ALL) that will be run as root or as (runas)

Additionally those keywords can be defined as alias, they are called User_Alias, Host_Alias,
Runas_Alias and Cmnd_Alias. This is useful for larger setups. Here a sudoers example:

cat /etc/sudoers
Host aliases are subnets or hostnames.
Host_Alias DMZ = 212.118.81.40/28
Host_Alias DESKTOP = work1, work2

User aliases are a list of users which can have the same rights

— SUDO —

26

User_Alias ADMINS = colin, luca, admin
User_Alias DEVEL = joe, jack, julia
Runas_Alias DBA = oracle,pgsql

Command aliases define the full path of a list of commands
Cmnd_Alias SYSTEM = /sbin/reboot,/usr/bin/kill,/sbin/halt,/sbin/shutdown,/etc/init.d/
Cmnd_Alias PW = /usr/bin/passwd [A-z]*, !/usr/bin/passwd root # Not root pwd!
Cmnd_Alias DEBUG = /usr/sbin/tcpdump,/usr/bin/wireshark,/usr/bin/nmap
The actual rules
root,ADMINS ALL = (ALL) NOPASSWD: ALL # ADMINS can do anything w/o a password.
DEVEL DESKTOP = (ALL) NOPASSWD: ALL # Developers have full right on desktops
DEVEL DMZ = (ALL) NOPASSWD: DEBUG # Developers can debug the DMZ servers.

User sysadmin can mess around in the DMZ servers with some commands.
sysadmin DMZ = (ALL) NOPASSWD: SYSTEM,PW,DEBUG
sysadmin ALL,!DMZ = (ALL) NOPASSWD: ALL # Can do anything outside the DMZ.
%dba ALL = (DBA) ALL # Group dba can run as database user.

anyone can mount/unmount a cd-rom on the desktop machines
ALL DESKTOP = NOPASSWD: /sbin/mount /cdrom,/sbin/umount /cdrom

9 ENCRYPT FILES

9.1 A single file

Encrypt and decrypt:

openssl des -salt -in file -out file.des
openssl des -d -salt -in file.des -out file

Note that the file can of course be a tar archive.

9.2 tar and encrypt a whole directory

tar -cf - directory | openssl des -salt -out directory.tar.des # Encrypt
openssl des -d -salt -in directory.tar.des | tar -x # Decrypt

9.3 tar zip and encrypt a whole directory

tar -zcf - directory | openssl des -salt -out directory.tar.gz.des # Encrypt
openssl des -d -salt -in directory.tar.gz.des | tar -xz # Decrypt

• Use -k mysecretpassword after des to avoid the interactive password request. However
note that this is highly insecure.

• Use des3 instead of des to get even stronger encryption (Triple-DES Cipher). This uses
also more CPU.

10 ENCRYPT PARTITIONS
Linux with LUKS (p28) | Linux dm-crypt only (p28) | FreeBSD GELI (p28) | FBSD pwd only
(p29)

There are (many) other alternative methods to encrypt disks, I only show here the methods I
know and use. Keep in mind that the security is only good as long the OS has not been
tempered with. An intruder could easily record the password from the keyboard events.
Furthermore the data is freely accessible when the partition is attached and will not prevent an
intruder to have access to it in this state.

— Encrypt Files —

27

10.1 Linux

Those instructions use the Linux dm-crypt (device-mapper) facility available on the 2.6 kernel.
In this example, lets encrypt the partition /dev/sdc1, it could be however any other partition or
disk, or USB or a file based partition created with losetup. In this case we would use /dev/
loop0. See file image partition. The device mapper uses labels to identify a partition. We use
sdc1 in this example, but it could be any string.

dm-crypt with LUKS

LUKS with dm-crypt has better encryption and makes it possible to have multiple passphrase for
the same partition or to change the password easily. To test if LUKS is available, simply type #
cryptsetup --help, if nothing about LUKS shows up, use the instructions below Without LUKS.
First create a partition if necessary: fdisk /dev/sdc.

Create encrypted partition

dd if=/dev/urandom of=/dev/sdc1 # Optional. For paranoids only (takes days)
cryptsetup -y luksFormat /dev/sdc1 # This destroys any data on sdc1
cryptsetup luksOpen /dev/sdc1 sdc1
mkfs.ext3 /dev/mapper/sdc1 # create ext3 file system
mount -t ext3 /dev/mapper/sdc1 /mnt
umount /mnt
cryptsetup luksClose sdc1 # Detach the encrypted partition

Attach

cryptsetup luksOpen /dev/sdc1 sdc1
mount -t ext3 /dev/mapper/sdc1 /mnt

Detach

umount /mnt
cryptsetup luksClose sdc1

dm-crypt without LUKS

cryptsetup -y create sdc1 /dev/sdc1 # or any other partition like /dev/loop0
dmsetup ls # check it, will display: sdc1 (254, 0)
mkfs.ext3 /dev/mapper/sdc1 # This is done only the first time!
mount -t ext3 /dev/mapper/sdc1 /mnt
umount /mnt/
cryptsetup remove sdc1 # Detach the encrypted partition

Do exactly the same (without the mkfs part!) to re-attach the partition. If the password is not
correct, the mount command will fail. In this case simply remove the map sdc1 (cryptsetup
remove sdc1) and create it again.

10.2 FreeBSD

The two popular FreeBSD disk encryption modules are gbde and geli. I now use geli because it
is faster and also uses the crypto device for hardware acceleration. See The FreeBSD handbook
Chapter 18.68 for all the details. The geli module must be loaded or compiled into the kernel:

options GEOM_ELI
device crypto # or as module:
echo 'geom_eli_load="YES"' >> /boot/loader.conf # or do: kldload geom_eli

8.http://www.freebsd.org/handbook/disks-encrypting.html

— Encrypt Partitions —

28

http://www.freebsd.org/handbook/disks-encrypting.html
http://www.freebsd.org/handbook/disks-encrypting.html

Use password and key

I use those settings for a typical disk encryption, it uses a passphrase AND a key to encrypt the
master key. That is you need both the password and the generated key /root/ad1.key to
attach the partition. The master key is stored inside the partition and is not visible. See below
for typical USB or file based image.

Create encrypted partition

dd if=/dev/random of=/root/ad1.key bs=64 count=1 # this key encrypts the mater key
geli init -s 4096 -K /root/ad1.key /dev/ad1 # -s 8192 is also OK for disks
geli attach -k /root/ad1.key /dev/ad1 # DO make a backup of /root/ad1.key
dd if=/dev/random of=/dev/ad1.eli bs=1m # Optional and takes a long time
newfs /dev/ad1.eli # Create file system
mount /dev/ad1.eli /mnt

Attach

geli attach -k /root/ad1.key /dev/ad1
fsck -ny -t ffs /dev/ad1.eli # In doubt check the file system
mount /dev/ad1.eli /mnt

Detach

The detach procedure is done automatically on shutdown.

umount /mnt
geli detach /dev/ad1.eli

/etc/fstab

The encrypted partition can be configured to be mounted with /etc/fstab. The password will be
prompted when booting. The following settings are required for this example:

grep geli /etc/rc.conf
geli_devices="ad1"
geli_ad1_flags="-k /root/ad1.key"
grep geli /etc/fstab
/dev/ad1.eli /home/private ufs rw 0 0

Use password only

It is more convenient to encrypt a USB stick or file based image with a passphrase only and no
key. In this case it is not necessary to carry the additional key file around. The procedure is
very much the same as above, simply without the key file. Let's encrypt a file based image
/cryptedfile of 1 GB.

dd if=/dev/zero of=/cryptedfile bs=1M count=1000 # 1 GB file
mdconfig -at vnode -f /cryptedfile
geli init /dev/md0 # encrypts with password only
geli attach /dev/md0
newfs -U -m 0 /dev/md0.eli
mount /dev/md0.eli /mnt
umount /dev/md0.eli
geli detach md0.eli

It is now possible to mount this image on an other system with the password only.

mdconfig -at vnode -f /cryptedfile
geli attach /dev/md0
mount /dev/md0.eli /mnt

— Encrypt Partitions —

29

11 SSL CERTIFICATES

So called SSL/TLS certificates are cryptographic public key certificates and are composed of a
public and a private key. The certificates are used to authenticate the endpoints and encrypt the
data. They are used for example on a web server (https) or mail server (imaps).

11.1 Procedure

• We need a certificate authority to sign our certificate. This step is usually provided by a
vendor like Thawte, Verisign, etc., however we can also create our own.

• Create a certificate signing request. This request is like an unsigned certificate (the
public part) and already contains all necessary information. The certificate request is
normally sent to the authority vendor for signing. This step also creates the private key
on the local machine.

• Sign the certificate with the certificate authority.
• If necessary join the certificate and the key in a single file to be used by the application

(web server, mail server etc.).

11.2 Configure OpenSSL

We use /usr/local/certs as directory for this example check or edit /etc/ssl/openssl.cnf
accordingly to your settings so you know where the files will be created. Here are the relevant
part of openssl.cnf:

[CA_default]
dir = /usr/local/certs/CA # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.

Make sure the directories exist or create them

mkdir -p /usr/local/certs/CA
cd /usr/local/certs/CA
mkdir certs crl newcerts private
echo "01" > serial # Only if serial does not exist
touch index.txt

11.3 Create a certificate authority

If you do not have a certificate authority from a vendor, you'll have to create your own. This
step is not necessary if one intend to use a vendor to sign the request. To make a certificate
authority (CA):

openssl req -new -x509 -days 730 -config /etc/ssl/openssl.cnf \
-keyout CA/private/cakey.pem -out CA/cacert.pem

11.4 Create a certificate signing request

To make a new certificate (for mail server or web server for example), first create a request
certificate with its private key. If your application do not support encrypted private key (for
example UW-IMAP does not), then disable encryption with -nodes.

openssl req -new -keyout newkey.pem -out newreq.pem \
-config /etc/ssl/openssl.cnf
openssl req -nodes -new -keyout newkey.pem -out newreq.pem \
-config /etc/ssl/openssl.cnf # No encryption for the key

— SSL Certificates —

30

11.5 Sign the certificate

The certificate request has to be signed by the CA to be valid, this step is usually done by the
vendor. Note: replace "servername" with the name of your server in the next commands.

cat newreq.pem newkey.pem > new.pem
openssl ca -policy policy_anything -out servernamecert.pem \
-config /etc/ssl/openssl.cnf -infiles new.pem
mv newkey.pem servernamekey.pem

Now servernamekey.pem is the private key and servernamecert.pem is the server certificate.

11.6 Create united certificate

The IMAP server wants to have both private key and server certificate in the same file. And in
general, this is also easier to handle, but the file has to be kept securely!. Apache also can deal
with it well. Create a file servername.pem containing both the certificate and key.

• Open the private key (servernamekey.pem) with a text editor and copy the private key
into the "servername.pem" file.

• Do the same with the server certificate (servernamecert.pem).
The final servername.pem file should look like this:

-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQDutWy+o/XZ/[...]qK5LqQgT3c9dU6fcR+WuSs6aejdEDDqBRQ
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
MIIERzCCA7CgAwIBAgIBBDANB[...]iG9w0BAQQFADCBxTELMAkGA1UEBhMCREUx
-----END CERTIFICATE-----

What we have now in the directory /usr/local/certs/:
CA/private/cakey.pem (CA server private key)
CA/cacert.pem (CA server public key)
certs/servernamekey.pem (server private key)
certs/servernamecert.pem (server signed certificate)
certs/servername.pem (server certificate with private key)

Keep the private key secure!

11.7 View certificate information

To view the certificate information simply do:

openssl x509 -text -in servernamecert.pem # View the certificate info
openssl req -noout -text -in server.csr # View the request info

12 CVS
Server setup (p31) | CVS test (p33) | SSH tunneling (p33) | CVS usage (p34)

12.1 Server setup

Initiate the CVS

Decide where the main repository will rest and create a root cvs. For example /usr/local/cvs (as
root):

mkdir -p /usr/local/cvs
setenv CVSROOT /usr/local/cvs # Set CVSROOT to the new location (local)
cvs init # Creates all internal CVS config files
cd /root

— CVS —

31

cvs checkout CVSROOT # Checkout the config files to modify them
cd CVSROOT
edit config (fine as it is)
cvs commit config
cat >> writers # Create a writers file (optionally also readers)
colin
^D # Use [Control][D] to quit the edit
cvs add writers # Add the file writers into the repository
cvs edit checkoutlist
cat >> checkoutlist
writers
^D # Use [Control][D] to quit the edit
cvs commit # Commit all the configuration changes

Add a readers file if you want to differentiate read and write permissions Note: Do not (ever)
edit files directly into the main cvs, but rather checkout the file, modify it and check it in. We
did this with the file writers to define the write access.
There are three popular ways to access the CVS at this point. The first two don't need any
further configuration. See the examples on CVSROOT below for how to use them:

• Direct local access to the file system. The user(s) need sufficient file permission to
access the CS directly and there is no further authentication in addition to the OS login.
However this is only useful if the repository is local.

• Remote access with ssh with the ext protocol. Any use with an ssh shell account and
read/write permissions on the CVS server can access the CVS directly with ext over ssh
without any additional tunnel. There is no server process running on the CVS for this to
work. The ssh login does the authentication.

• Remote access with pserver. This is the preferred use for larger user base as the users
are authenticated by the CVS pserver with a dedicated password database, there is
therefore no need for local users accounts. This setup is explained below.

Network setup with inetd

The CVS can be run locally only if a network access is not needed. For a remote access, the
daemon inetd can start the pserver with the following line in /etc/inetd.conf (/etc/xinetd.d/cvs
on SuSE):

cvspserver stream tcp nowait cvs /usr/bin/cvs cvs \
--allow-root=/usr/local/cvs pserver

It is a good idea to block the cvs port from the Internet with the firewall and use an ssh tunnel
to access the repository remotely.

Separate authentication

It is possible to have cvs users which are not part of the OS (no local users). This is actually
probably wanted too from the security point of view. Simply add a file named passwd (in the
CVSROOT directory) containing the users login and password in the crypt format. This is can be
done with the apache htpasswd tool.
Note: This passwd file is the only file which has to be edited directly in the CVSROOT directory.
Also it won't be checked out. More info with htpasswd --help

htpasswd -cb passwd user1 password1 # -c creates the file
htpasswd -b passwd user2 password2

Now add :cvs at the end of each line to tell the cvs server to change the user to cvs (or
whatever your cvs server is running under). It looks like this:

cat passwd
user1:xsFjhU22u8Fuo:cvs
user2:vnefJOsnnvToM:cvs

— CVS —

32

12.2 Test it

Test the login as normal user (for example here me)

cvs -d :pserver:colin@192.168.50.254:/usr/local/cvs login
Logging in to :pserver:colin@192.168.50.254:2401/usr/local/cvs
CVS password:

CVSROOT variable

This is an environment variable used to specify the location of the repository we're doing
operations on. For local use, it can be just set to the directory of the repository. For use over
the network, the transport protocol must be specified. Set the CVSROOT variable with setenv
CVSROOT string on a csh, tcsh shell, or with export CVSROOT=string on a sh, bash shell.

setenv CVSROOT :pserver:<username>@<host>:/cvsdirectory
For example:
setenv CVSROOT /usr/local/cvs # Used locally only
setenv CVSROOT :local:/usr/local/cvs # Same as above
setenv CVSROOT :ext:user@cvsserver:/usr/local/cvs # Direct access with SSH
setenv CVS_RSH ssh # for the ext access
setenv CVSROOT :pserver:user@cvsserver.254:/usr/local/cvs # network with pserver

When the login succeeded one can import a new project into the repository: cd into your
project root directory

cvs import <module name> <vendor tag> <initial tag>
cvs -d :pserver:colin@192.168.50.254:/usr/local/cvs import MyProject MyCompany START

Where MyProject is the name of the new project in the repository (used later to checkout). Cvs
will import the current directory content into the new project.

To checkout:

cvs -d :pserver:colin@192.168.50.254:/usr/local/cvs checkout MyProject
or
setenv CVSROOT :pserver:colin@192.168.50.254:/usr/local/cvs
cvs checkout MyProject

12.3 SSH tunneling for CVS

We need 2 shells for this. On the first shell we connect to the cvs server with ssh and
port-forward the cvs connection. On the second shell we use the cvs normally as if it where
running locally.
on shell 1:

ssh -L2401:localhost:2401 colin@cvs_server # Connect directly to the CVS server. Or:
ssh -L2401:cvs_server:2401 colin@gateway # Use a gateway to reach the CVS

on shell 2:

setenv CVSROOT :pserver:colin@localhost:/usr/local/cvs
cvs login
Logging in to :pserver:colin@localhost:2401/usr/local/cvs
CVS password:
cvs checkout MyProject/src

— CVS —

33

12.4 CVS commands and usage

Import

The import command is used to add a whole directory, it must be run from within the directory
to be imported. Say the directory /devel/ contains all files and subdirectories to be imported.
The directory name on the CVS (the module) will be called "myapp".

cvs import [options] directory-name vendor-tag release-tag
cd /devel # Must be inside the project to import it
cvs import myapp Company R1_0 # Release tag can be anything in one word

After a while a new directory "/devel/tools/" was added and it has to be imported too.

cd /devel/tools
cvs import myapp/tools Company R1_0

Checkout update add commit

cvs co myapp/tools # Will only checkout the directory tools
cvs co -r R1_1 myapp # Checkout myapp at release R1_1 (is sticky)
cvs -q -d update -P # A typical CVS update
cvs update -A # Reset any sticky tag (or date, option)
cvs add newfile # Add a new file
cvs add -kb newfile # Add a new binary file
cvs commit file1 file2 # Commit the two files only
cvs commit -m "message" # Commit all changes done with a message

Create a patch

It is best to create and apply a patch from the working development directory related to the
project, or from within the source directory.

cd /devel/project
diff -Naur olddir newdir > patchfile # Create a patch from a directory or a file
diff -Naur oldfile newfile > patchfile

Apply a patch

Sometimes it is necessary to strip a directory level from the patch, depending how it was
created. In case of difficulties, simply look at the first lines of the patch and try -p0, -p1 or -p2.

cd /devel/project
patch --dry-run -p0 < patchfile # Test the path without applying it
patch -p0 < patchfile
patch -p1 < patchfile # strip off the 1st level from the path

13 SVN
Server setup (p34) | SVN+SSH (p35) | SVN over http (p35) | SVN usage (p36)

Subversion (SVN)9 is a version control system designed to be the successor of CVS (Concurrent
Versions System). The concept is similar to CVS, but many shortcomings where improved. See
also the SVN book10.

13.1 Server setup

The initiation of the repository is fairly simple (here for example /home/svn/ must exist):

svnadmin create --fs-type fsfs /home/svn/project1

9.http://subversion.tigris.org/
10.http://svnbook.red-bean.com/en/1.4/

— SVN —

34

http://subversion.tigris.org/
http://svnbook.red-bean.com/en/1.4/

Now the access to the repository is made possible with:
• file:// Direct file system access with the svn client with. This requires local

permissions on the file system.
• svn:// or svn+ssh:// Remote access with the svnserve server (also over SSH). This

requires local permissions on the file system.
• http:// Remote access with webdav using apache. No local users are necessary for this

method.
Using the local file system, it is now possible to import and then check out an existing project.
Unlike with CVS it is not necessary to cd into the project directory, simply give the full path:

svn import /project1/ file:///home/svn/project1/trunk -m 'Initial import'
svn checkout file:///home/svn/project1

The new directory "trunk" is only a convention, this is not required.

Remote access with ssh

No special setup is required to access the repository via ssh, simply replace file:// with
svn+ssh/hostname. For example:

svn checkout svn+ssh://hostname/home/svn/project1
As with the local file access, every user needs an ssh access to the server (with a local account)
and also read/write access. This method might be suitable for a small group. All users could
belong to a subversion group which owns the repository, for example:

groupadd subversion
groupmod -A user1 subversion
chown -R root:subversion /home/svn
chmod -R 770 /home/svn

Remote access with http (apache)

Remote access over http (https) is the only good solution for a larger user group. This method
uses the apache authentication, not the local accounts. This is a typical but small apache
configuration:

LoadModule dav_module modules/mod_dav.so
LoadModule dav_svn_module modules/mod_dav_svn.so
LoadModule authz_svn_module modules/mod_authz_svn.so # Only for access control
<Location /svn>

DAV svn
any "/svn/foo" URL will map to a repository /home/svn/foo
SVNParentPath /home/svn
AuthType Basic
AuthName "Subversion repository"
AuthzSVNAccessFile /etc/apache2/svn.acl
AuthUserFile /etc/apache2/svn-passwd
Require valid-user

</Location>
The apache server needs full access to the repository:

chown -R www:www /home/svn
Create a user with htpasswd2:

htpasswd -c /etc/svn-passwd user1 # -c creates the file

Access control svn.acl example

Default it read access. "* =" would be default no access
[/]
* = r
[groups]

— SVN —

35

project1-developers = joe, jack, jane
Give write access to the developers
[project1:]
@project1-developers = rw

13.2 SVN commands and usage

See also the Subversion Quick Reference Card11. Tortoise SVN12 is a nice Windows interface.

Import

A new project, that is a directory with some files, is imported into the repository with the
import command. Import is also used to add a directory with its content to an existing project.

svn help import # Get help for any command
Add a new directory (with content) into the src dir on project1

svn import /project1/newdir http://host.url/svn/project1/trunk/src -m 'add newdir'

Typical SVN commands

svn co http://host.url/svn/project1/trunk # Checkout the most recent version
Tags and branches are created by copying

svn mkdir http://host.url/svn/project1/tags/ # Create the tags directory
svn copy -m "Tag rc1 rel." http://host.url/svn/project1/trunk \

http://host.url/svn/project1/tags/1.0rc1
svn status [--verbose] # Check files status into working dir
svn add src/file.h src/file.cpp # Add two files
svn commit -m 'Added new class file' # Commit the changes with a message
svn ls http://host.url/svn/project1/tags/ # List all tags
svn move foo.c bar.c # Move (rename) files
svn delete some_old_file # Delete files

14 USEFUL COMMANDS
less (p36) | vi (p37) | mail (p37) | tar (p37) | dd (p38) | screen (p39) | find (p40) |
Miscellaneous (p40)

14.1 less

The less command displays a text document on the console. It is present on most installation.

less unixtoolbox.xhtml
Some important commands are (^N stands for [control]-[N]):

h H good help on display
f ^F ^V SPACE Forward one window (or N lines).
b ^B ESC-v Backward one window (or N lines).
F Forward forever; like "tail -f".
/pattern Search forward for (N-th) matching line.
?pattern Search backward for (N-th) matching line.
n Repeat previous search (for N-th occurrence).
N Repeat previous search in reverse direction.
q quit

11.http://www.cs.put.poznan.pl/csobaniec/Papers/svn-refcard.pdf
12.http://tortoisesvn.tigris.org

— Useful Commands —

36

http://www.cs.put.poznan.pl/csobaniec/Papers/svn-refcard.pdf
http://tortoisesvn.tigris.org

14.2 vi

Vi is present on ANY Linux/Unix installation and it is therefore useful to know some basic
commands. There are two modes: command mode and insertion mode. The commands mode is
accessed with [ESC], the insertion mode with i.

Quit

:w newfilename save the file to newfilename
:wq or :x save and quit
:q! quit without saving

Search and move

/string Search forward for string
?string Search back for string
n Search for next instance of string
N Search for previous instance of string
{ Move a paragraph back
} Move a paragraph forward
1G Move to the first line of the file
nG Move to the n th line of the file
G Move to the last line of the file
:%s/OLD/NEW/g Search and replace every occurrence

Delete text

dd delete current line
D Delete to the end of the line
dw Delete word
x Delete character
u Undo last
U Undo all changes to current line

14.3 mail

The mail command is a basic application to read and send email, it is usually installed. To send
an email simply type "mail user@domain". The first line is the subject, then the mail content.
Terminate and send the email with a single dot (.) in a new line. Example:

mail c@cb.vu
Subject: Your text is full of typos
"For a moment, nothing happened. Then, after a second or so,
nothing continued to happen."
.
EOT
#

This is also working with a pipe:

echo "This is the mail body" | mail c@cb.vu
This is also a simple way to test the mail server.

14.4 tar

The command tar (tape archive) creates and extracts archives of file and directories. The
archive .tar is uncompressed, a compressed archive has the extension .tgz or .tar.gz (zip) or
.tbz (bzip2). Do not use absolute path when creating an archive, you probably want to unpack it
somewhere else. Some typical commands are:

— Useful Commands —

37

Create

cd /
tar -cf home.tar home/ # archive the whole /home directory (c for create)
tar -czf home.tgz home/ # same with zip compression
tar -cjf home.tbz home/ # same with bzip2 compression

Only include one (or two) directories from a tree, but keep the relative structure. For example
archive /usr/local/etc and /usr/local/www and the first directory in the archive should be local/.

tar -C /usr -czf local.tgz local/etc local/www
tar -C /usr -xzf local.tgz # To untar the local dir into /usr
cd /usr; tar -xzf local.tgz # Is the same as above

Extract

tar -tzf home.tgz # look inside the archive without extracting (list)
tar -xf home.tar # extract the archive here (x for extract)
tar -xzf home.tgz # same with zip compression
tar -xjf home.tgz # same with bzip2 compression
tar -xjf home.tgz home/colin/file.txt # Restore a single file

More advanced

tar c dir/ | gzip | ssh user@remote 'dd of=dir.tgz' # arch dir/ and store remotely.
tar cvf - `find . -print` > backup.tar # arch the current directory.
tar -cf - -C /etc . | tar xpf - -C /backup/etc # Copy directories
tar -cf - -C /etc . | ssh user@remote tar xpf - -C /backup/etc # Remote copy.
tar -czf home.tgz --exclude '*.o' --exclude 'tmp/' home/

14.5 dd

The program dd (disk dump) is used to copy partitions and disks and for other copy tricks.
Typical usage:

dd if=<source> of=<target> bs=<byte size> conv=<conversion>
Important conv options:

notrunc do not truncate the output file, all zeros will be written as zeros.
noerror continue after read errors (e.g. bad blocks)
sync pad every input block with Nulls to ibs-size

The default byte size is 512 (one block). The MBR, where the partiton table is located, is on the
first block, the first 63 blocks of a disk are empty. Larger byte sizes are faster to copy but
require also more memory.

Backup and restore

dd if=/dev/hda of=/dev/hdc bs=16065b # Copy disk to disk (same size)
dd if=/dev/sda7 of /home/root.img bs=4096 conv=notrunc,noerror # Backup /
dd if /home/root.img of=/dev/sda7 bs=4096 conv=notrunc,noerror # Restore /
dd bs=1M if=/dev/ad4s3e | gzip -c > ad4s3e.gz # Zip the backup
gunzip -dc ad4s3e.gz | dd of=/dev/ad0s3e bs=1M # Restore the zip
dd bs=1M if=/dev/ad4s3e | gzip | ssh eedcoba@fry 'dd of=ad4s3e.gz' # also remote
gunzip -dc ad4s3e.gz | ssh eedcoba@host 'dd of=/dev/ad0s3e bs=1M'
dd if=/dev/ad0 of=/dev/ad2 skip=1 seek=1 bs=4k conv=noerror # Skip MBR

This is necessary if the destination (ad2) is smaller.

Recover

The command dd will read every single block of the partiton, even the blocks. In case of
problems it is better to use the option conv=sync,noerror so dd will skip the bad block and

— Useful Commands —

38

write zeros at the destination. Accordingly it is important to set the block size equal or smaller
than the disk block size. A 1k size seems safe, set it with bs=1k. If a disk has bad sectors and
the data should be recovered from a partiton, create an image file with dd, mount the image
and copy the content to a new disk. With the option noerror, dd will skip the bad sectors and
write zeros instead, thus only the data contained in the bad sectors will be lost.

dd if=/dev/hda of=/dev/null bs=1m # Check for bad blocks
dd bs=1k if=/dev/hda1 conv=sync,noerror,notrunc | gzip | ssh \ # Send to remote
root@fry 'dd of=hda1.gz bs=1k'
dd bs=1k if=/dev/hda1 conv=sync,noerror,notrunc of=hda1.img # Store into an image
mount -o loop /hda1.img /mnt # Mount the image (page 12)
rsync -ax /mnt/ /newdisk/ # Copy on a new disk
dd if=/dev/hda of=/dev/hda # Refresh the magnetic state

The above is useful to refresh a disk. It is perfectly safe, but must be unmounted.

Delete

dd if=/dev/zero of=/dev/hdc count=1 # Delete MBR and partiton table
dd if=/dev/zero of=/dev/hdc # Delete full disk
dd if=/dev/urandom of=/dev/hdc # Delete full disk better
kill -USR1 PID # View dd progress (Linux only!)

14.6 screen

Screen has two main functionalities:
• Run multiple terminal session within a single terminal.
• A started program is decoupled from the real terminal and can thus run in the

background. The real terminal can be closed and reattached later.

Short start example

start screen with:

screen
Within the screen session we can start a long lasting program (like top). Detach the terminal
and reattach the same terminal from an other machine (over ssh for example).

top
Now detach with Ctrl-a Ctrl-d. Reattach the terminal with

screen -r
or better:

screen -R -D
Attach here and now. In detail this means: If a session is running, then reattach. If necessary
detach and logout remotely first. If it was not running create it and notify the user.

Screen commands (within screen)

All screen commands start with Ctrl-a.
• Ctrl-a ? help and summary of functions
• Ctrl-a c create an new window (terminal)
• Ctrl-a Ctrl-n and Ctrl-a Ctrl-p to switch to the next or previous window in the list, by

number.
• Ctrl-a Ctrl-N where N is a number from 0 to 9, to switch to the corresponding window.
• Ctrl-a " to get a navigable list of running windows
• Ctrl-a a to clear a missed Ctrl-a
• Ctrl-a Ctrl-d to disconnect and leave the session running in the background
• Ctrl-a x lock the screen terminal with a password

— Useful Commands —

39

The screen session is terminated when the program within the running terminal is closed and
you logout from the terminal.

14.7 Find

Some important options:
-x (on BSD) -xdev (on Linux) Stay on the same file system (dev in fstab).
-exec cmd {} \; Execute the command and replace {} with the full path
-iname Like -name but is case insensitive
-ls Display information about the file (like ls -la)
-size n n is +-n (k M G T P)
-cmin n File's status was last changed n minutes ago.

find . -type f ! -perm -444 # Find files not readable by all
find . -type d ! -perm -111 # Find dirs not accessible by all
find /home/user/ -cmin 10 -print # Files created or modified in the last 10 min.
find . -name '*.[ch]' | xargs grep -E 'expr' # Search 'expr' in this dir and below.
find / -name "*.core" | xargs rm # Find core dumps and delete them
find / -name "*.core" -print -exec rm {} \; # Other syntax
find . \(-name "*.png" -o -name "*.jpg" \) -print

iname is not case sensitive
find . \(-iname "*.png" -o -iname "*.jpg" \) -print -exec tar -rf images.tar {} \;
find . -type f -name "*.txt" ! -name README.txt -print # Exclude README.txt files
find /var/ -size +1M -exec ls -lh {} \;
find /var/ -size +1M -ls # This is simpler
find . -size +10M -size -50M -print
find /usr/ports/ -name work -type d -print -exec rm -rf {} \; # Clean the ports

Find files with SUID; those file have to be kept secure
find / -type f -user root -perm -4000 -exec ls -l {} \;

14.8 Miscellaneous

which command # Show full path name of command
time command # See how long a command takes to execute
time cat # Use time as stopwatch. Ctrl-c to stop
set | grep $USER # List the current environment
cal -3 # Display a three month calendar
date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]
date 10022155 # Set date and time
whatis grep # Display a short info on the command or word
whereis java # Search path and standard directories for word
setenv varname value # Set env. variable varname to value (csh/tcsh)
export varname="value" # set env. variable varname to value (sh/ksh/bash)
pwd # Print working directory
mkdir -p /path/to/dir # no error if existing, make parent dirs as needed
rmdir /path/to/dir # Remove directory
rm -rf /path/to/dir # Remove directory and its content (force)
cp -la /dir1 /dir2 # Archive and hard link files instead of copy
cp -lpR /dir1 /dir2 # Same for FreeBSD
mv /dir1 /dir2 # Rename a directory

15 INSTALL SOFTWARE

15.1 List installed packages

rpm -qa # List installed packages (RH, SuSE, RPM based)
dpkg -l # Debian, Ubuntu
pkg_info # FreeBSD list all installed packages

— Install Software —

40

pkg_info -W smbd # FreeBSD show which package smbd belongs to
pkginfo # Solaris

15.2 Add/remove software

Front ends: yast2/yast for SuSE, redhat-config-packages for Red Hat.

rpm -i pkgname.rpm # install the package (RH, SuSE, RPM based)
rpm -e pkgname # Remove package

Debian

apt-get update # First update the package lists
apt-get install emacs # Install the package emacs
dpkg --remove emacs # Remove the package emacs

FreeBSD

pkg_add -r rsync # Fetch and install rsync.
pkg_delete /var/db/pkg/rsync-xx # Delete the rsync package

Set where the packages are fetched from with the PACKAGESITE variable. For example:

export PACKAGESITE=ftp://ftp.freebsd.org/pub/FreeBSD/ports/i386/packages/Latest/
or ftp://ftp.freebsd.org/pub/FreeBSD/ports/i386/packages-6-stable/Latest/

FreeBSD ports

The port tree /usr/ports/ is a collection of software ready to compile and install. The ports are
updated with the program portsnap.

portsnap fetch extract # Create the tree when running the first time
portsnap fetch update # Update the port tree
cd /usr/ports/net/rsync/ # Select the package to install
make install distclean # Install and cleanup (also see man ports)
make package # Make a binary package for the port

15.3 Library path

Due to complex dependencies and runtime linking, programs are difficult to copy to an other
system or distribution. However for small programs with little dependencies, the missing
libraries can be copied over. The runtime libraries (and the missing one) are checked with ldd
and managed with ldconfig.

ldd /usr/bin/rsync # List all needed runtime libraries
ldconfig -n /path/to/libs/ # Add a path to the shared libraries directories
ldconfig -m /path/to/libs/ # FreeBSD
LD_LIBRARY_PATH # The variable set the link library path

16 CONVERT MEDIA

Sometimes one simply need to convert a video, audio file or document to another format.

16.1 Text encoding

Text encoding can get totally wrong, specially when the language requires special characters
like àäç. The command iconv can convert from one encoding to an other.

— Convert Media —

41

iconv -f <from_encoding> -t <to_encoding> <input_file>
iconv -f ISO8859-1 -t UTF-8 -o file.input > file_utf8
iconv -l # List known coded character sets

Without the -f option, iconv will use the local char-set, which is usually fine if the document
displays well.

16.2 Unix - DOS newlines

Convert DOS (CR/LF) to Unix (LF) newlines within a Unix shell. See also dos2unix and unix2dos
if you have them.

sed 's/.$//' dosfile.txt > unixfile.txt
Convert Unix to DOS newlines within a Windows environment. Use sed from mingw or cygwin.

sed -n p unixfile.txt > dosfile.txt

16.3 PDF to Jpeg and concatenate PDF files

Convert a PDF document with gs (GhostScript) to jpeg (or png) images for each page. Also
much shorter with convert (from ImageMagick or GraphicsMagick).

gs -dBATCH -dNOPAUSE -sDEVICE=jpeg -r150 -dTextAlphaBits=4 -dGraphicsAlphaBits=4 \
-dMaxStripSize=8192 -sOutputFile=unixtoolbox_%d.jpg unixtoolbox.pdf

convert unixtoolbox.pdf unixtoolbox-%03d.png
convert *.jpeg images.pdf # Create a simple PDF with all pictures

Ghostscript can also concatenate multiple pdf files into a single one.

gs -q -sPAPERSIZE=a4 -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -sOutputFile=all.pdf \
file1.pdf file2.pdf ... # On Windows use '#' instead of '='

16.4 Convert video

Compress the Canon digicam video with an mpeg4 codec and repair the crappy sound.

mencoder -o videoout.avi -oac mp3lame -ovc lavc -srate 11025 \
-channels 1 -af-adv force=1 -lameopts preset=medium -lavcopts \
vcodec=msmpeg4v2:vbitrate=600 -mc 0 vidoein.AVI

16.5 Copy an audio cd

The program cdparanoia13 can save the audio tracks (FreeBSD port in audio/cdparanoia/),
oggenc can encode in Ogg Vorbis format, lame converts to mp3.

cdparanoia -B # Copy the tracks to wav files in current dir
lame -b 256 in.wav out.mp3 # Encode in mp3 256 kb/s
for i in *.wav; do lame -b 256 $i `basename $i .wav`.mp3; done
oggenc in.wav -b 256 out.ogg # Encode in Ogg Vorbis 256 kb/s

13.http://xiph.org/paranoia/

— Convert Media —

42

http://xiph.org/paranoia/
http://xiph.org/paranoia/

17 PRINTING

17.1 Print with lpr

lpr unixtoolbox.ps # Print on default printer
export PRINTER=hp4600 # Change the default printer
lpr -Php4500 #2 unixtoolbox.ps # Use printer hp4500 and print 2 copies
lpr -o Duplex=DuplexNoTumble ... # Print duplex along the long side
lpr -o PageSize=A4,Duplex=DuplexNoTumble ...
lpq # Check the queue on default printer
lpq -l -Php4500 # Queue on printer hp4500 with verbose
lprm - # Remove all users jobs on default printer
lprm -Php4500 3186 # Remove job 3186. Find job nbr with lpq
lpc status # List all available printers
lpc status hp4500 # Check if printer is online and queue length

18 DATABASES

18.1 PostgreSQL

Change root or a username password

psql -d template1 -U pgsql
> alter user pgsql with password 'pgsql_password'; # Use username instead of "pgsql"

Create user and database

The commands createuser, dropuser, createdb and dropdb are convenient shortcuts
equivalent to the SQL commands. The new user is bob with database bobdb ; use as root with
pgsql the database super user:

createuser -U pgsql -P bob # -P will ask for password
createdb -U pgsql -O bob bobdb # new bobdb is owned by bob
dropdb bobdb # Delete database bobdb
dropuser bob # Delete user bob

The general database authentication mechanism is configured in pg_hba.conf

Grant remote access

The file $PGSQL_DATA_D/postgresql.conf specifies the address to bind to. Typically
listen_addresses = '*' for Postgres 8.x.
The file $PGSQL_DATA_D/pg_hba.conf defines the access control. Examples:

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host bobdb bob 212.117.81.42 255.255.255.255 password
host all all 0.0.0.0/0 password

Backup and restore

The backups and restore are done with the user pgsql or postgres. Backup and restore a single
database:

pg_dump --clean dbname > dbname_sql.dump
psql dbname < dbname_sql.dump

Backup and restore all databases (including users):

pg_dumpall --clean > full.dump
psql -f full.dump postgres

— Printing —

43

In this case the restore is started with the database postgres which is better when reloading an
empty cluster.

18.2 MySQL

Change mysql root or username password

Method 1

/etc/init.d/mysql stop
or
killall mysqld
mysqld --skip-grant-tables
mysqladmin -u root password 'newpasswd'
/etc/init.d/mysql start

Method 2

mysql -u root mysql
mysql> UPDATE USER SET PASSWORD=PASSWORD("newpassword") where user='root';
mysql> FLUSH PRIVILEGES; # Use username instead of "root"
mysql> quit

Create user and database

mysql -u root mysql
mysql> CREATE DATABASE bobdb;
mysql> GRANT ALL ON *.* TO 'bob'@'%' IDENTIFIED BY 'pwd'; # Use localhost instead of %

to restrict the network access
mysql> DROP DATABASE bobdb; # Delete database
mysql> DROP USER bob; # Delete user
mysql> DELETE FROM mysql.user WHERE user='bob and host='hostname'; # Alt. command
mysql> FLUSH PRIVILEGES;

Grant remote access

Remote access is typically permitted for a database, and not all databases. The file /etc/my.cnf
contains the IP address to bind to. Typically comment the line bind-address = out.

mysql -u root mysql
mysql> GRANT ALL ON bobdb.* TO bob@'xxx.xxx.xxx.xxx' IDENTIFIED BY 'PASSWORD';
mysql> REVOKE GRANT OPTION ON foo.* FROM bar@'xxx.xxx.xxx.xxx';
mysql> FLUSH PRIVILEGES; # Use 'hostname' or also '%' for full access

Backup and restore

Backup and restore a single database:

mysqldump -u root -psecret --add-drop-database dbname > dbname_sql.dump
mysql -u root -psecret -D dbname < dbname_sql.dump

Backup and restore all databases:

mysqldump -u root -psecret --add-drop-database --all-databases > full.dump
mysql -u root -psecret < full.dump

Here is "secret" the mysql root password, there is no space after -p. When the -p option is used
alone (w/o password), the password is asked at the command prompt.

18.1 SQLite

SQLite14 is a small powerfull self-contined, serverless, zero-configuration SQL database.

14.http://www.sqlite.org

— Databases —

44

http://www.sqlite.org

Dump and restore

It can be useful to dump and restore an SQLite database. For example you can edit the dump
file to change a column attribute or type and then restore the database. This is easier than
messing with SQL commands. Use the command sqlite3 for a 3.x database.

sqlite database.db .dump > dump.sql # dump
sqlite database.db < dump.sql # restore

Convert 2.x to 3.x database

sqlite database_v2.db .dump | sqlite3 database_v3.db

19 DISK QUOTA

A disk quota allows to limit the amount of disk space and/or the number of files a user or (or
member of group) can use. The quotas are allocated on a per-file system basis and are enforced
by the kernel.

19.1 Linux setup

The quota tools package usually needs to be installed, it contains the command line tools.
Activate the user quota in the fstab and remount the partition. If the partition is busy, either all
locked files must be closed, or the system must be rebooted. Add usrquota to the fstab mount
options, for example:

/dev/sda2 /home reiserfs rw,acl,user_xattr,usrquota 1 1
mount -o remount /home
mount # Check if usrquota is active, otherwise reboot

Initialize the quota.user file with quotacheck.

quotacheck -vum /home
chmod 644 /home/aquota.user # To let the users check their own quota

Activate the quota either with the provided script (e.g. /etc/init.d/quotad on SuSE) or with
quotaon:

quotaon -vu /home
Check that the quota is active with:

quota -v

19.2 FreeBSD setup

The quota tools are part of the base system, however the kernel needs the option quota. If it is
not there, add it and recompile the kernel.

options QUOTA
As with Linux, add the quota to the fstab options (userquota, not usrquota):

/dev/ad0s1d /home ufs rw,noatime,userquota 2 2
mount /home # To remount the partition

Enable disk quotas in /etc/rc.conf and start the quota.

grep quotas /etc/rc.conf
enable_quotas="YES" # turn on quotas on startup (or NO).
check_quotas="YES" # Check quotas on startup (or NO).
/etc/rc.d/quota start

— Disk Quota —

45

19.3 Assign quota limits

The quotas are not limited per default (set to 0). The limits are set with edquota for single
users. A quota can be also duplicated to many users. The file structure is different between the
quota implementations, but the principle is the same: the values of blocks and inodes can be
limited. Only change the values of soft and hard. If not specified, the blocks are 1k. The grace
period is set with edquota -t. For example:

edquota -u colin

Linux

Disk quotas for user colin (uid 1007):
Filesystem blocks soft hard inodes soft hard
/dev/sda8 108 1000 2000 1 0 0

FreeBSD

Quotas for user colin:
/home: kbytes in use: 504184, limits (soft = 700000, hard = 800000)

inodes in use: 1792, limits (soft = 0, hard = 0)

For many users

The command edquota -p is used to duplicate a quota to other users. For example to duplicate
a reference quota to all users:

edquota -p refuser `awk -F: '$3 > 499 {print $1}' /etc/passwd`
edquota -p refuser user1 user2 # Duplicate to 2 users

Checks

Users can check their quota by simply typing quota (the file quota.user must be readable). Root
can check all quotas.

quota -u colin # Check quota for a user
repquota /home # Full report for the partition for all users

20 SHELLS

Most Linux distributions use the bash shell while the BSDs use tcsh, the bourne shell is only
used for scripts. Filters are very useful and can be piped:

grep Pattern matching
sed Search and Replace strings or characters
cut Print specific columns from a marker
sort Sort alphabetically or numerically
uniq Remove duplicate lines from a file

For example used all at once:

ifconfig | sed 's/ / /g' | cut -d" " -f1 | uniq | grep -E "[a-z0-9]+" | sort -r
ifconfig | sed '/.*inet addr:/!d;s///;s/ .*//'|sort -t. -k1,1n -k2,2n -k3,3n -k4,4n

The first character in the sed pattern is a tab. To write a tab on the console, use ctrl-v ctrl-tab.

20.1 bash

Redirects and pipes for bash and sh:

— Shells —

46

cmd 1> file # Redirect stdout to file.
cmd 2> file # Redirect stderr to file.
cmd 1>> file # Redirect and append stdout to file.
cmd &> file # Redirect both stdout and stderr to file.
cmd >file 2>&1 # Redirects stderr to stdout and then to file.
cmd1 | cmd2 # pipe stdout to cmd2
cmd1 2>&1 | cmd2 # pipe stdout and stderr to cmd2

Modify your configuration in ~/.bashrc (it can also be ~/.bash_profile). The following entries are
useful, reload with ". .bashrc".

in .bashrc
bind '"\e[A"':history-search-backward # Use up and down arrow to search
bind '"\e[B"':history-search-forward # the history. Invaluable!
set -o emacs # Set emacs mode in bash (see below)
set bell-style visible # Do not beep, inverse colors

Set a nice prompt like [user@host]/path/todir>
PS1="\[\033[1;30m\][\[\033[1;34m\]\u\[\033[1;30m\]"
PS1="$PS1@\[\033[0;33m\]\h\[\033[1;30m\]]\[\033[0;37m\]"
PS1="$PS1\w\[\033[1;30m\]>\[\033[0m\]"
To check the currently active aliases, simply type alias
alias ls='ls -aF' # Append indicator (one of */=>@|)
alias ll='ls -aFls' # Listing
alias la='ls -all'
alias ..='cd ..'
alias ...='cd ../..'
export HISTFILESIZE=5000 # Larger history
export CLICOLOR=1 # Use colors (if possible)
export LSCOLORS=ExGxFxdxCxDxDxBxBxExEx

20.2 tcsh

Redirects and pipes for tcsh and csh (simple > and >> are the same as sh):

cmd >& file # Redirect both stdout and stderr to file.
cmd >>& file # Append both stdout and stderr to file.
cmd1 | cmd2 # pipe stdout to cmd2
cmd1 |& cmd2 # pipe stdout and stderr to cmd2

The settings for csh/tcsh are set in ~/.cshrc, reload with "source .cshrc". Examples:

in .cshrc
alias ls 'ls -aF'
alias ll 'ls -aFls'
alias la 'ls -all'
alias .. 'cd ..'
alias ... 'cd ../..'
set prompt = "%B%n%b@%B%m%b%/> " # like user@host/path/todir>
set history = 5000
set savehist = (6000 merge)
set autolist # Report possible completions with tab
set visiblebell # Do not beep, inverse colors
Bindkey and colors
bindkey -e Select Emacs bindings # Use emacs keys to edit the command prompt
bindkey -k up history-search-backward # Use up and down arrow to search
bindkey -k down history-search-forward
setenv CLICOLOR 1 # Use colors (if possible)
setenv LSCOLORS ExGxFxdxCxDxDxBxBxExEx

The emacs mode enables to use the emacs keys shortcuts to modify the command prompt line.
This is extremely useful (not only for emacs users). The most used commands are:

C-a Move cursor to beginning of line
C-e Move cursor to end of line

— Shells —

47

M-b Move cursor back one word
M-f Move cursor forward one word
M-d Cut the next word
C-w Cut the last word
C-u Cut everything before the cursor
C-k Cut everything after the cursor (rest of the line)
C-y Paste the last thing to be cut (simply paste)
C-_ Undo

Note: C- = hold control, M- = hold meta (which is usually the alt or escape key).

21 SCRIPTING
Basics (p48) | Script example (p49) | sed/useful commands (p49)

The Bourne shell (/bin/sh) is present on all Unix installations and scripts written in this language
are (quite) portable; man 1 sh is a good reference.

21.1 Basics

Variables and arguments

Assign with variable=value and get content with $variable

MESSAGE="Hello World" # Assign a string
PI=3.1415 # Assign a decimal number
N=8
TWON=`expr $N * 2` # Arithmetic expression (only integers)
TWON=$(($N * 2)) # Other syntax
TWOPI=`echo "$PI * 2" | bc -l` # Use bc for floating point operations
ZERO=`echo "c($PI/4)-sqrt(2)/2" | bc -l`

The command line arguments are

$0, $1, $2, ... # $0 is the command itself
$# # The number of arguments
$* # All arguments (also $@)

Special Variables

$$ # The current process ID
$? # exit status of last command

command
if [$? != 0]; then

echo "command failed"
fi

mypath=`pwd`
mypath=${mypath}/file.txt
echo ${mypath##*/} # Display the filename only
echo ${mypath%%.*} # Full path without extention
var2=${var:=string} # Use var if set, otherwise use string

assign string to var and then to var2.

Constructs

for file in `ls`
do

echo $file
done

count=0
while [$count -lt 5]; do

— Scripting —

48

echo $count
sleep 1
count=$(($count + 1))

done

myfunction() {
find . -type f -name "*.$1" -print # $1 is first argument of the function

}
myfunction "txt"

Generate a file

MYHOME=/home/colin
cat > testhome.sh << _EOF
All of this goes into the file testhome.sh
if [-d "$MYHOME"] ; then

echo $MYHOME exists
else

echo $MYHOME does not exist
fi
_EOF
sh testhome.sh

21.2 Bourne script example

As a small example, the script used to create a PDF booklet from this xhtml document:

#!/bin/sh
This script creates a book in pdf format ready to print on a duplex printer
if [$# -ne 1]; then # Check the argument

echo 1>&2 "Usage: $0 HtmlFile"
exit 1 # non zero exit if error

fi

file=$1 # Assign the filename
fname=${file%.*} # Get the name of the file only
fext=${file#*.} # Get the extension of the file

prince $file -o $fname.pdf # from www.princexml.com
pdftops -paper A4 -noshrink $fname.pdf $fname.ps # create postscript booklet
cat $fname.ps |psbook|psnup -Pa4 -2 |pstops -b "2:0,1U(21cm,29.7cm)" > $fname.book.ps

ps2pdf13 -sPAPERSIZE=a4 -sAutoRotatePages=None $fname.book.ps $fname.book.pdf
use #a4 and #None on Windows!

exit 0 # exit 0 means successful

21.3 Some sed commands

sed 's/string1/string2/g' # Replace string1 with string2
sed -i 's/wroong/wrong/g' *.txt # Replace a recurring word with g
sed 's/\(.*\)1/\12/g' # Modify anystring1 to anystring2
sed '/<p>/,/<\/p>/d' t.xhtml # Delete lines that start with <p>

and end with </p>
sed '/ *#/d; /^ *$/d' # Remove comments and blank lines
sed 's/[\t]*$//' # Remove trailing spaces (use tab as \t)
sed 's/^[\t]*//;s/[\t]*$//' # Remove leading and trailing spaces
sed 's/[^*]/[&]/' # Enclose first char with [] top->[t]op

— Scripting —

49

21.4 Some useful commands

sort -t. -k1,1n -k2,2n -k3,3n -k4,4n # Sort IPv4 ip addresses
echo 'Test' | tr '[:lower:]' '[:upper:]' # Case conversion
echo foo.bar | cut -d . -f 1 # Returns foo
PID=$(ps | grep script.sh | grep bin | awk '{print $1}') # PID of a running script
PID=$(ps axww | grep [p]ing | awk '{print $1}') # PID of ping (w/o grep pid)
IP=$(ifconfig $INTERFACE | sed '/.*inet addr:/!d;s///;s/ .*//') # Linux
IP=$(ifconfig $INTERFACE | sed '/.*inet /!d;s///;s/ .*//') # FreeBSD
if [`diff file1 file2 | wc -l` != 0]; then [...] fi # File changed?
cat /etc/master.passwd | grep -v root | grep -v *: | awk -F":" \ # Create http passwd
'{ printf("%s:%s\n", $1, $2) }' > /usr/local/etc/apache2/passwd

testuser=$(cat /usr/local/etc/apache2/passwd | grep -v \ # Check user in passwd
root | grep -v *: | awk -F":" '{ printf("%s\n", $1) }' | grep ^user$)

22 PROGRAMMING

22.1 C basics

strcpy(newstr,str) /* copy str to newstr */
expr1 ? expr2 : expr3 /* if (expr1) expr2 else expr3 */
x = (y > z) ? y : z; /* if (y > z) x = y; else x = z; */
int a[]={0,1,2}; /* Initialized array (or a[3]={0,1,2}; */
int a[2][3]={{1,2,3},{4,5,6}}; /* Array of array of ints */
int i = 12345; /* Convert in i to char str */
char str[10];
sprintf(str, "%d", i);

22.2 C example

A minimal c program simple.c:

#include <stdio.h>
main() {

int number=42;
printf("The answer is %i\n", number);

}
Compile with:

gcc simple.c -o simple
./simple
The answer is 42

22.3 C++ basics

*pointer // Object pointed to by pointer
&obj // Address of object obj
obj.x // Member x of class obj (object obj)
pobj->x // Member x of class pointed to by pobj

// (*pobj).x and pobj->x are the same

22.4 C++ example

As a slightly more realistic program in C++, let's create a class in its own header (IPv4.h) and
implementation (IPv4.cpp) and create a program which uses the class functionality. The class

— Programming —

50

has a member to convert an IP address in integer format to the known quad format. This is a
minimal c++ program with a class and multi-source compile.

IPv4 class

IPv4.h:

#ifndef IPV4_H
#define IPV4_H
#include <string>

namespace GenericUtils { // create a namespace
class IPv4 { // class definition
public:

IPv4();
~IPv4();
std::string IPint_to_IPquad(unsigned long ip);// member interface

};
} //namespace GenericUtils
#endif // IPV4_H

IPv4.cpp:

#include "IPv4.h"
#include <string>
#include <sstream>
using namespace std; // use the namespaces
using namespace GenericUtils;

IPv4::IPv4() {} // default constructor/destructor
IPv4::~IPv4() {}
string IPv4::IPint_to_IPquad(unsigned long ip) { // member implementation

ostringstream ipstr; // use a stringstream
ipstr << ((ip &0xff000000) >> 24) // Bitwise right shift

<< "." << ((ip &0x00ff0000) >> 16)
<< "." << ((ip &0x0000ff00) >> 8)
<< "." << ((ip &0x000000ff));

return ipstr.str();
}

The program simplecpp.cpp

#include "IPv4.h"
#include <iostream>
#include <string>
using namespace std;

int main (int argc, char* argv[]) {
string ipstr; // define variables
unsigned long ipint = 1347861486; // The IP in integer form
GenericUtils::IPv4 iputils; // create an object of the class
ipstr = iputils.IPint_to_IPquad(ipint); // call the class member
cout << ipint << " = " << ipstr << endl; // print the result

return 0;
}

Compile and execute with:

g++ -c IPv4.cpp simplecpp.cpp # Compile in objects
g++ IPv4.o simplecpp.o -o simplecpp.exe # Link the objects to final executable
./simplecpp.exe
1347861486 = 80.86.187.238

— Programming —

51

Use ldd to check which libraries are used by the executable and where they are located. This
command is also used to check if a shared library is missing or if the executable is static.

ldd /sbin/ifconfig

22.5 Simple Makefile

The corresponding minimal Makefile for the multi-source program is shown below. The lines with
instructions must begin with a tab! The back slash "\" can be used to cut long lines.

CC = g++
CFLAGS = -O
OBJS = IPv4.o simplecpp.o

simplecpp: ${OBJS}
${CC} -o simplecpp ${CFLAGS} ${OBJS}

clean:
rm -f ${TARGET} ${OBJS}

23 ONLINE HELP

23.1 Documentation

Linux Documentation en.tldp.org
Linux Man Pages www.linuxmanpages.com
Linux commands directorywww.oreillynet.com/linux/cmd
Linux doc man howtos linux.die.net
FreeBSD Handbook www.freebsd.org/handbook
FreeBSD Man Pages www.freebsd.org/cgi/man.cgi
FreeBSD user wiki www.freebsdwiki.net
Solaris Man Pages docs.sun.com/app/docs/coll/40.10

23.2 Other Unix/Linux references

Rosetta Stone for Unix bhami.com/rosetta.html (a Unix command translator)
Unix guide cross referenceunixguide.net/unixguide.shtml
Linux commands line list www.linuxguide.it/commands_list.php
Short Linux reference www.pixelbeat.org/cmdline.html

That's all folks!

This document: "Unix Toolbox revision 11" is licensed under a Creative Commons Licence
[Attribution - Share Alike]. © Colin Barschel 2007-2008. Some rights reserved.

— Online Help —

52

http://en.tldp.org/
http://www.linuxmanpages.com/
http://www.oreillynet.com/linux/cmd/
http://linux.die.net/
http://www.freebsd.org/handbook/
http://www.freebsd.org/cgi/man.cgi
http://www.freebsdwiki.net
http://docs.sun.com/app/docs/coll/40.10
http://bhami.com/rosetta.html
http://unixguide.net/unixguide.shtml
http://www.linuxguide.it/linux_commands_line_en.htm
http://www.pixelbeat.org/cmdline.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
mailto:c_at_cb.vu

	System
	Hardware Informations
	Linux
	FreeBSD

	Load, statistics and messages
	Users
	Limits
	Linux
	Per shell/script
	Per user/process
	System wide

	FreeBSD
	Per shell/script
	Per user/process
	System wide

	Solaris

	Runlevels
	Linux
	FreeBSD

	Reset root password
	Linux method 1
	FreeBSD and Linux method 2

	Kernel modules
	Linux
	FreeBSD

	Compile Kernel
	Linux
	FreeBSD

	Processes
	Listing and PIDs
	Priority
	Background/Foreground
	Top
	Signals/Kill

	File System
	Permissions
	Disk information
	Boot
	FreeBSD

	System mount points/Disk usage
	Disk usage

	Who has which files opened
	FreeBSD and most Unixes
	Linux

	Mount/remount a file system
	FreeBSD
	Linux
	Mount a FreeBSD partition with Linux

	Remount

	Mount an SMB share
	Linux
	FreeBSD

	Mount an image
	Linux loop-back
	FreeBSD
	Solaris and FreeBSD

	Create and burn an ISO image
	Burn a CD/DVD ISO image
	FreeBSD
	Linux

	Convert a Nero .nrg file to .iso
	Convert a bin/cue image to .iso

	Create a file based image
	FreeBSD
	Linux
	Linux with losetup

	Create a memory file system
	FreeBSD
	Linux

	Disk performance

	Network
	Debugging (See also Traffic analysis)
	Routing
	Print routing table
	Add and delete a route
	FreeBSD
	Linux
	Windows

	Configure additional IP addresses
	Linux
	FreeBSD

	Change MAC address
	Ports in use
	Firewall
	Linux
	FreeBSD

	IP Forward for routing
	Linux
	FreeBSD

	NAT Network Address Translation
	Linux
	FreeBSD

	DNS
	Windows
	Forward queries
	Reverse queries
	/etc/hosts

	DHCP
	Linux
	FreeBSD
	Windows

	Traffic analysis
	Sniff with tcpdump
	Scan with nmap

	Traffic control (QoS)
	Limit upload
	Linux
	FreeBSD

	Quality of service
	Linux
	Calculate port range and mask
	FreeBSD

	NIS Debugging
	Linux

	SSH SCP
	Public key authentication
	Using the Windows client from ssh.com
	Using putty for Windows

	Check fingerprint
	Secure file transfer
	Tunneling
	Direct forward on the gate
	Netbios and remote desktop forward to a second server
	Debug

	Connect two clients behind NAT
	Connect to VNC behind NAT

	VPN with SSH
	Single P2P connection
	Connect to the server
	Server is on Linux
	Server is on FreeBSD

	Configure the client

	Connect two networks
	Connect from gateA to gateB
	gateB is on Linux
	gateB is on FreeBSD

	Configure gateA
	gateA is on Linux
	gateA is on FreeBSD

	RSYNC
	Rsync on Windows
	Public key authentication
	Automatic backup

	SUDO
	Configuration

	Encrypt Files
	A single file
	tar and encrypt a whole directory
	tar zip and encrypt a whole directory

	Encrypt Partitions
	Linux
	dm-crypt with LUKS
	Create encrypted partition
	Attach
	Detach

	dm-crypt without LUKS

	FreeBSD
	Use password and key
	Create encrypted partition
	Attach
	Detach
	/etc/fstab

	Use password only

	SSL Certificates
	Procedure
	Configure OpenSSL
	Create a certificate authority
	Create a certificate signing request
	Sign the certificate
	Create united certificate
	View certificate information

	CVS
	Server setup
	Initiate the CVS
	Network setup with inetd
	Separate authentication

	Test it
	CVSROOT variable

	SSH tunneling for CVS
	CVS commands and usage
	Import
	Checkout update add commit
	Create a patch
	Apply a patch

	SVN
	Server setup
	Remote access with ssh
	Remote access with http (apache)
	Access control svn.acl example

	SVN commands and usage
	Import
	Typical SVN commands

	Useful Commands
	less
	vi
	Quit
	Search and move
	Delete text

	mail
	tar
	Create
	Extract
	More advanced

	dd
	Backup and restore
	Recover
	Delete

	screen
	Short start example
	Screen commands (within screen)

	Find
	Miscellaneous

	Install Software
	List installed packages
	Add/remove software
	Debian
	FreeBSD
	FreeBSD ports

	Library path

	Convert Media
	Text encoding
	Unix - DOS newlines
	PDF to Jpeg and concatenate PDF files
	Convert video
	Copy an audio cd

	Printing
	Print with lpr

	Databases
	PostgreSQL
	Change root or a username password
	Create user and database
	Grant remote access
	Backup and restore

	MySQL
	Change mysql root or username password
	Method 1
	Method 2

	Create user and database
	Grant remote access
	Backup and restore

	SQLite
	Dump and restore
	Convert 2.x to 3.x database

	Disk Quota
	Linux setup
	FreeBSD setup
	Assign quota limits
	Linux
	FreeBSD
	For many users
	Checks

	Shells
	bash
	tcsh

	Scripting
	Basics
	Variables and arguments
	Special Variables
	Constructs
	Generate a file

	Bourne script example
	Some sed commands
	Some useful commands

	Programming
	C basics
	C example
	C++ basics
	C++ example
	IPv4 class
	IPv4.h:
	IPv4.cpp:

	The program simplecpp.cpp

	Simple Makefile

	Online Help
	Documentation
	Other Unix/Linux references

